스테레오 비전 시스템을 이용하여 이동 물체의 거리와 속도를 측정하기 위한 방법을 제안하였다. 이동 물체의 거리와 속도 측정에 있어서 가장 중요한 요소 중 하나는 물체 추적의 정확성이다. 따라서 빠르게 움직이는 물체 추적을 위해 배경 영상 기법을 이용하였고, 물체의 그림자와 잡음을 제거하기 위해 지역 Opening 연산을 이용하였다. 적응형 임계치를 적용하여 자기 변화에 상관없이 이동 물체의 추출 효율을 높이도록 하였다. 좌, 우 중심점 위치를 보정하여 더 정확한 물체의 속도와 거리를 측정할 수 있도록 하였다. 배경 영상 기법과 지역 Opening 연산을 사용하여 계산 과정을 줄임으로써 이동 물체의 거리와 속도의 실시간 처리가 가능하도록 하였다. 실험 결과, 배경 영상 기법은 다른 알고리즘과는 달리 빠르게 움직이는 물체를 추적할 수 있음을 보여준다. 적응형 임계치를 적용하여 후보 영역을 줄임으로써 목표물 추출 효율이 개선되었다. 양안 시차를 이용하여 목표물의 중심점을 보정함으로써 거리와 속도 측정 오차가 감소하였다. 스테레오 카메라에서부터 이동 물체까지의 거리 측정 오차율은 2.68%, 이동 물체의 속도 측정 오차율은 3.32%로 본 시스템의 향상된 효율성을 나타냈다.
IT기술이 급속히 발달하고 스마트 기기의 개인보급이 늘어나면서 정보의 전달 매체로 시청각 자료 중에서도 특히 영상 자료가 많이 활용된다. 문헌정보서비스 콘텐츠로서 영상자료는 필수 요소가 되었으며, TV를 통한 단방향 전달, 인터넷을 통한 양방향 서비스, 도서관 시청각 자료 대출 등 다양한 방법으로 활용되고 있다. 특히 인터넷 환경에서 스마트 기기를 통한 영상서비스 관점에서 정보 제공자는 제공 정보에 대한 가공에 적은 노력과 비용을 들이고자 하고, 또한 사용자는 과도한 데이터 사용량에 대한 부담과 시간, 공간적인 제약으로 인해 원하는 부분만을 효율적으로 이용하고자 한다. 따라서 영상에 대한 내용을 유사한 부분끼리 자동으로 구분하고 요약, 색인하여 이용 편의성을 높일 필요가 있다. 본 논문에서는 교육용 어학 영상의 내용과 그 특성을 분석하여 영상을 이루는 샷을 자동으로 구분하고 비주얼 특징을 조합하여 어학 영상의 세분화된 내용 정보를 결정하고 색인하는 방법을 제안한다. 외국어 강의 영상을 이용한 실험에 의해 의미기반의 샷 결정에 높은 정확률을 보였으며, 교육용 어학 영상의 요약 서비스에 효율적으로 적용 가능함을 확인하였다.
한반도에서 발생하는 해양조석하중(OTL, Ocean Tide Leading)에 의한 지각변위는 수직방향으로 최대 ${\sim}3cm$에 달한다. 현재 우주측지 기술로 성취할 수 있는 측위 정확도가 mm수준임을 고려할 때, cm 단위로 발생하는 OTL 지각변위 영향은 정밀하게 모델링하고 측위 시 보정해야할 대상이다. 이 연구에서는 먼저 OTL 지각변위 보정에 필요한 해양조석 모델들을 서로 비교하고 OTL 지각변위 예측 프로그램을 검증하였다. 경기만 지역의 경우 해양조석 모델에 따라 ${\sim}6mm$ RMS의 수직성분 지각변위 차이가 발생하였다. VLBI 천문대가 설치되는 서울, 울산, 서귀포에서의 OTL 지각변위를 분석한 결과 서귀포는 ${\sim}3.5cm$, 서울과 울산은 ${\sim}2cm$ 진폭의 수직방향 지각변위가 예측되었다. 또한 GPS 자료 처리에서 OTL 지각변위 영향을 보정하지 않았을 경우 GPS Zenith Wet Delay(ZWD) 추정 값이 달라졌으며, OTL 지각변위와 ZWD간의 배율인자(scale facto.)는 3.72로 나타났다.
대규모의 데이터를 다루는 여러 시스템에서 데이터를 다수의 병렬 디스크에 분산시켜 저장한 후 질의 처리시 동시에 여러 개의 디스크를 접근함으로써 입출력 성능의 향상을 위한 많은 노력들이 행해져 왔다. 대부분 이전 연구들은 데이터 공간을 이루는 각 차원이 겹치지 않는 여러개의 구간으로 나누어져 전체 데이터 공간이 그리드 형태로 분할되어 있다는 가정하에 각 차원의 구간 번호로 결정되는 그리드 셀에 대해서 효과적으로 디스크 번호를 할당하는 알고리즘 개발에 집중되었다. 하지만, 그들은 데이터 공간을 그리드 형태로 분할하는 방법이 전체 디클러스터링 알고리즘 성능에 미치는 영향을 간과하였다. 본 논문에서 우리는 효과적인 그리드 분할을 통하여 매핑 함수를 이용하는 디클러스터링 알고리즘의 성능을 향상 시켰다. 이를 위하여 영역 질의 크기가 주어졌을 때 겹치는 그리드 셀의 수를 예측하는 모델을 제시하였으며 이를 이용하여 가능한 그리드 분할 방법들 중에서 질의 크기를 감소시키는 분할 방법을 선택하였다. 일반적으로, 다차원 데이터에 대해서는 이진 분할을 하지만 본 논문에서는 더 작은 수의 차원을 선택해서 여러 번 분할함으로써 질의를 만족하는 그리드 셀의 수를 감소시켰다. 다양한 실험 결과에 의하면 본 논문에서 제시한 예측 모델은 질의 크기와 차원에 관계없이 0.5% 이내의 에러율을 보이는 것으로 나타났다. 또한 효과적인 그리드 분할을 통하여 다차원 데이터에 대해서 가장 성능이 좋은 것으로 소개되고 있는 Kronecker sequence 매핑 함수를 이용하는 디클러스터링 알고리즘의 성능을 최대 23배까지 향상시킬 수 있음을 알 수 있었다.
지속적으로 강화되는 환경오염 물질 배출 규제로 인해, 질소 산화물(NOx)의 배출량 예측 및 관리는 산업 현장에서 많은 관심을 받고 있다. 본 연구에서는 인공지능 기반 질소산화물 배출량 예측모델 개발을 위한 연구모형을 제안하였다. 제안된 연구모형은 데이터의 전처리 과정부터 인공지능 모델의 학습 및 평가까지 모두 포함하고 있으며, 시계열 특성을 가지는 NOx 배출량을 예측하기 위하여 순환 신경망 중 하나인 Long Short-Term Memory (LSTM) 모델을 활용하였다. 또한 의사결정나무 기법을 활용하여 LSTM의 time window를 모델 학습 이전에 선정하는 방법을 채택하였다. 본 연구에서 제안된 연구모형의 NOx 배출량 예측 모델은 가열로에서 확보한 조업 데이터로 학습되었으며, 최적 모델은 hyper-parameter를 조절하여 개발되었다. 개발된 LSTM 모델은 학습 데이터 및 평가 데이터에 대하여 모두 93% 이상의 NOx 배출량 예측 정확도를 나타내었다. 본 연구에 제안된 연구모형은 시계열 특성을 가지는 다양한 대기오염 물질의 배출량 예측모델 개발에 응용될 수 있을 것으로 기대된다.
본 논문에서는 주가예측의 정확도를 향상시키기 위하여 공적분 검정(Cointegration Tests)과 인공 신경망(Artificial Neural Networks)을 사용한 2단계 하이브리드 예측 모델을 제시한다. 기존의 연구에서는 예측을 시도하고자 하는 종목의 일자별 개별 레코드를 인공 신경망과 같은 방법으로 학습함으로써 주식 데이터가 가지는 시계열적 특성을 충분히 반영하지 못하였는데, 새로 제안한 모형에서는 주식자료의 과거시차들의 값들도 인공 신경망의 속성(feature)으로 사용하여 기존 연구의 한계를 보완하였다. 또한, 예측대상종목의 정보들 외에도 장기적으로 높은 시계열 유사성을 보유한 종목들을 선발한 후 속성으로 사용하여 모형의 예측성능을 향상 시켰다. 구체적으로 1단계는 Johansen의 공적분 검정을 통하여 예측대상종목과 장기적 관계(long-term relationship)에 있는 종목을 추출하고, 2단계는 이 선발된 종목들과 예측대상종목의 시계열 정보 특성을 속성으로 구축한 인공 신경망으로 학습하여 관심 종목을 예측한다. 제안된 모델의 성능을 확인하기 위하여 KOSPI 지수의 방향성을 예측하는 시스템을 구현하였으며, 시가총액 상위 종목군을 대상으로 지수와의 공적분 검정을 하였다. 성능을 살펴보기 위하여 본 연구에서는 시계열 정보가 속성으로 반영된 단순 인공 신경망 모델, 공적분 검정을 통과한 종목들의 시계열 속성이 포함된 모델, 그리고 그 모델과 속성의 개수를 동일하게 하기 위하여 임의로 종목을 선택하여 이들의 시계열 속성이 포함된 모델을 구축하였다. 실험 결과 공적분 검정을 통과한 종목군의 속성이 결합된 모델은 단순 인공 신경망만으로 학습된 기존 모델에 비하여 평균적으로는 11.29% (최대 29.98%) 정확도가 향상되었고, 임의로 선택된 종목군의 속성이 결합된 모델에 비해서는 평균적으로는 10.59% (최대 25.78%) 가 향상된 예측 정확도를 보여주었다.
스마트 홈(smart home)은 인간과 홈의 컨텍스트(context) 정보를 이용하여 인간에게 자동적인 홈 서비스(Home service)를 제공해줄 수 있는 미래의 환경이다. 인간의 위치와 모션은 스마트 홈에서 굉장히 중요한 컨텍스트이다. 본 논문은 스마트 홈에서 인간의 위치와 모션을 예측할 수 있는 실시간 휴먼 트랙커(tracker)를 연구하였다. 실시간 휴먼 트랙커를 위해 4개의 네트워크 카메라를 사용하였다. 본 논문에서는 실시간 휴먼 트랙커의 구조를 설명하고, 인간의 위치와 모션을 자동적으로 예측 및 판단하는 알고리즘을 제안하였다. 인간 위치를 위해서 3개의 배경 이미지를 이용하였다(이미지1: 빈 방 이미지, 이미지2: 거주자가 제외 된 가구 및 가전 이미지, 이미지3: 전체 이미지). 실시간 휴먼 트랙커는 3개의 이미지를 비교하여 각 이미지로부터 추출되는 특징 값을 결정하고, 이들 특징 값을 SVM(Support Vector Machine)을 이용하여 각각의 모션을 예측하였다. 3개의 배경 이미지를 이용한 인간 위치 인식실험은 평균 0.037 초가 소요 되었다. SVM을 이용한 모션 인식 요소에서, 각 동작에 대하여 1000번씩 측정했고, 모든 모션의 정확도 평균은 86.5% 의 정확도를 보였다.
현대 사회에서 상업적 성공을 위해서는 상권 분석이 필요하며, 상권 분석의 요소 중에서 핵심적인 부분은 통행량이다. 통행량을 측정하기 위해서 사람이 직접 측정하는 방법이 많이 사용되고 있으나 높은 인건비와 측정 실수를 유발할 가능성이 높다. 본 논문에서는 웹캠을 통해 촬영한 이미지를 이용하여 보행자의 통행량을 측정할 수 있는 알고리즘을 제안한다. 제안하는 알고리즘은 사람 영역 탐지와 움직임 추적으로 구성되어 있다. 사람 영역 탐지에서는 움직임 영역을 추출하고 HoG 특징과 Adaboost 분류기를 이용하여 사람 영역을 탐지한다. 움직임 추적에는 멀티 레벨 매칭과 거짓 양성 제거를 이용하여 추적 및 통행량을 측정한다. 멀티 레벨 매칭은 HoG 영역에 대해 유사도 계수를 구하여 판별하는 과정, 칼만 필터를 이용하여 추정한 위치의 이미지 유사도를 계산 과정, 사람 영역 탐지에서 추출한 움직임 영역을 이용해 유사도를 계산하는 3단계 과정으로 구성되어 있다. 거짓 양성 제거는 사람 영역 탐지에서 잘못된 탐지 영역을 제거한다. 제안한 알고리즘의 성능을 분석하기 위하여 기존의 사람 영역 탐지 및 추적하는 방법과 비교 실험을 수행하였다. 그 결과 제안하는 방법은 사람 통행량 측정에서 83.6% 정확도를 보였으며, 기존 알고리즘에 비하여 11% 높은 성능을 달성하였다.
발열 때문에 더이상 회로 집적도를 높일 수 없기 때문에 단일 코어 프로세서의 성능 향상은 한계에 달했다. 그래서 코어를 여러 개 사용하는 멀티 코어, 매니 코어 형태의 프로세서가 등장했으며 병렬 프로그래밍이 중요해졌다. 이러한 상황에서 병렬 프로그래밍에 여러 장점이 있는 순수 함수형 언어 Haskell이 주목받고 있다. Haskell은 식 계산 방식에서 이미 병렬성이 내재되어 있으며 병렬 구조를 지원하는 모나드 도구를 제공한다. 그런데 Haskell 병렬 프로그램의 성능은 메모리 재사용 시스템을 포함한 실행시간 시스템에 큰 영향을 받는다. 이미 Haskell이 제공하는 메모리 프로파일링 도구로 GC-tune이 있지만, GC-tune은 가능한 모든 GC 옵션에 대해 프로그램 실행 시간을 반복 측정하기 때문에 GC 조정 시간이 너무 오래 걸린다. 그래서 본 연구에서는 기본적인 분할 정복법을 이용해서 GC-tune의 탐색 영역을 매 단계마다 4분의 1로 줄이는 방법을 제안한다. 제안하는 방법을 두 가지 병렬 프로그램(극대 독립 집합 프로그램과 K-평균 프로그램)에 적용한 결과, 평균 98%의 정확도로 실행 시간을 평균 7.78배 단축시켰다.
이미지를 기반으로 하는 증강현실 시스템에서 가상의 객체를 실제 영상에 저작할 때 생기는 이질감을 줄이기 위해서는 실제 영상에 저작된 가상객체의 방향과 위치에 대해 정확하게 추정을 해야 하며, 이때 호모그래피를 사용한다. 호모그래피를 추정하기 위해서는 SURF와 같은 특징점을 추출하고 추출된 특징점들을 통해 호모그래피 행렬을 추정한다. 호모그래피 행렬의 추정을 위해서 RANSAC 알고리즘이 주로 사용되고 있으며, 특히 RANSAC에 제약 조건 만족 문제(Constraint Satisfaction Problem)와 여기에 사용되는 제약조건을 동적으로 적용하여 속도와 정확도를 높인 DCS-RANSAC 알고리즘이 연구되었다. DCS-RANSAC 알고리즘에서 사용된 이미지 그룹 데이터는 수동적인 방법을 통해 직관적으로 분류되어 있지만 특징점 분포 패턴이 다양하지 않고, 이미지들을 정확하게 분류하기가 어려워서 이로 인해 알고리즘의 성능이 저하되는 경우가 있다. 따라서 본 논문에서는 K-means 클러스터링을 적용하여 이미지들을 자동으로 분류하고 각 이미지 그룹마다 각기 다른 제약조건을 적용하는 KCS-RANSAC 알고리즘을 제안한다. 제안하는 알고리즘은 머신러닝 기법인 K-means 클러스터링을 사용하여 전처리 단계에서 이미지를 특징점 분포 패턴에 따라 자동으로 분류하고, 분류된 이미지에 제약조건을 적용하여 알고리즘의 속도와 정확도를 향상시켰다. 실험 결과 본 논문에서 제안하는 KCS-RANSAC이 DCS-RANSAC 알고리즘에 비해 수행시간이 약 15% 단축되었고, 오차율은 약 35% 줄어들었으며, 참정보 비율은 약 14% 증가되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.