• Title/Summary/Keyword: Process tomography

Search Result 373, Processing Time 0.026 seconds

Features and Trends of IEC Particular Standards for Medical Equipment Related to Diagnostic X-ray Based on IEC 60601-1:2005 Ed. 3.0 (IEC 60601-1: 3판이 적용된 진단용 X선장치 관련 개별규격의 동향 및 특징)

  • Kim, Hyun-Ji;Kim, Jung-Min;Choi, In-Seok;Yoon, Yong-Su;Seo, Deok-Nam;Kim, Jung-Su;Kim, Dae-Young;Park, Sung-Yong
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • IEC publications have applied in many countries all over the world such as Europe or Japan and these also have been published as in dustrial standards (KS) and notifications of Korea Food and Drug Administration (KFDA) in Korea. As the general standard of IEC 60601 series for medical electric (ME) equipment was revised as $3^{rd}$ edition in 2005, additional and particular standards have been revised or established newly. Under these circumstances, it is importance for manufacturing and assembling companies or authorized testing companies to understand the trend for revisions of IEC publications. Therefore in this study, the latest version of 3 IEC standards related to medical X-ray equipment : IEC 60601-2-44 for X-ray equipment for computed tomography (CT), IEC 60601-2-45 for mammographic X-ray equipment and IEC 60601-2-54 for X-ray equipment for radiography or radioscopy were covered and analyzed for trends and features accompanied by revision based on IEC 60601-1 $3^{rd}$ Ed. As KFDA notifications in force have referred to the particular standards based on 2nd edition of IEC 60601-1, those revised version of 3 particular standards were compared to KFDA notifications in force. The features of the latest standards applying IEC 60601-1 $3^{rd}$ Ed were shown as following: 1) Requirements for mechanical hazards, especially (motorized) moving parts were emphasized. 2) Indication and recording of patient dose were required. 3) Risk management process was introduced and enabled to monitor potential risks systematically. 4) DR system (digital radiography system) as well as analogue system (film-screen system) was included in the scope. Presently, KFDA will revise the notifications applying the particular standards based on IEC 60601-1 $3^{rd}$ Ed in a few years. Therefore the features of particular standards applying IEC 60601-1 $3^{rd}$ Ed was expected to help manufacturers, assemblers or testing companies of medical electric equipment understand IEC publications or KFDA notifications slated to be published.

Assessment of Attenuation Correction Techniques with a $^{137}Cs$ Point Source ($^{137}Cs$ 점선원을 이용한 감쇠 보정기법들의 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Son, Hye-Kyoung;Park, Yun-Young;Park, Hae-Joung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Purpose: The objective of this study was to assess attenuation correction algorithms with the $^{137}Cs$ point source for the brain positron omission tomography (PET) imaging process. Materials & Methods: Four different types of phantoms were used in this study for testing various types of the attenuation correction techniques. Transmission data of a $^{137}Cs$ point source were acquired after infusing the emission source into phantoms and then the emission data were subsequently acquired in 3D acquisition mode. Scatter corrections were performed with a background tail-fitting algorithm. Emission data were then reconstructed using iterative reconstruction method with a measured (MAC), elliptical (ELAC), segmented (SAC) and remapping (RAC) attenuation correction, respectively. Reconstructed images were then both qualitatively and quantitatively assessed. In addition, reconstructed images of a normal subject were assessed by nuclear medicine physicians. Subtracted images were also compared. Results: ELEC, SAC, and RAC provided a uniform phantom image with less noise for a cylindrical phantom. In contrast, a decrease in intensity at the central portion of the attenuation map was noticed at the result of the MAC. Reconstructed images of Jaszack and Hoffan phantoms presented better quality with RAC and SAC. The attenuation of a skull on images of the normal subject was clearly noticed and the attenuation correction without considering the attenuation of the skull resulted in artificial defects on images of the brain. Conclusion: the complicated and improved attenuation correction methods were needed to obtain the better accuracy of the quantitative brain PET images.

Surgical Management of Idiopathic Tracheal Stenosis -Three case reports- (특발성 기관 협착증(Idiopathic Tracheal Stenosis)의 외과적 치험 -3예 보고-)

  • Kim, Hyung-Tae;Choi, Ho;Yoon, You-Sang
    • Journal of Chest Surgery
    • /
    • v.36 no.6
    • /
    • pp.439-443
    • /
    • 2003
  • A lower laryngeal and upper tracheal stenosis that is of idiopathic origin is occasionally seen. It is called an idiopathic tracheal stenosis. These circumferential fibrous stenosis is rare and they are most often located in the subglottic larynx and extend to varying distances predominantly in young women. Because of the unknown nature of the disease process and uncertainty about its future progression, patients were approached conservatively. Recently, surgical resection and reconstruction have been increasingly performed, as favorable results were obtained. Three female patients with dyspnea were admitted. For two patients, they were diagnosed this conditions as bronchial asthma by mistake. All patients were performed computed tomography and bronchoscopy. For two patients with subglottic stenosis, subglottic resection was performed by cervical collar incision, and for the other one patient with distal tracheal stenosis, tracheal resection was performed by right posterolateral thoracotomy. A diagnosis of idipathic tracheal stenosis was confirmed by postoperatively pathologic finding. For one case, because of anastomosis site infection and restenosis, a whole tracheal exposure was performed by cervical collar incision and median sternotomy. And reoperation was peformed successfully.

The P300 Source Localization in the Patients with Obsessive-Compulsive Disorder using the LORETA Imaging and SPM (강박장애에서 LORETA 영상을 이용한 P300 국소원의 통계적 분석)

  • Park, Sung-Kun;Choi, Jung-Seok;Yu, Soh-Young;Lee, Bo Reom;Kang, Seung-Suk;Roh, Kyu Sik;Ha, Tae-Hyun;Kwon, Jun Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.10 no.2
    • /
    • pp.168-176
    • /
    • 2003
  • Objectives:We investigated the characteristics of P300 generators in obsessive-compulsive disorder(OCD) patients by using voxel-based statistical parametric mapping of current density images. Methods:P300 generators, produced by a rare target tone of 1500Hz under a frequent non-target tone of 1,000Hz, were measured in 15 right-handed OCD patients and 15 controls. Low Resolution Electromagnetic Tomography(LORETA), using a realistic head model of the boundary element method based on individual MRI, was applied to the 128-channel EEG. Statistical parametric mapping(SPM) was applied for the statistical analysis. Results:We found that both groups had the mean current density of P300 in the parietal, temporal and prefrontal lobe. There was a trend for decreased current density in the prefrontal area in OCD patients. The statistical comparison showed current density increase in the supraparietal area, a statistically significant longer P300 latency and a trend for reduced P300 amplitude in OCD patients. Conclusion:It suggests that P300 source of both groups exists in multiple brain regions at the same time. And both groups had no statistically significant differences in the current density of P300 except for increased current density in the supraparietal area in OCD patients. But, considering the statistically significant longer P300 latency, a trend for reduced P300 amplitude and relative mean current density reduction in the prefrontal area in OCD patients, this study suggests that the frontal lobe may have a reduced normal inhibitory process in OCD patients.

  • PDF

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Quantitative Analysis of the Orbital Volume Change in Isolated Zygoma Fracture (관골 단독 골절에서 안구 용적 변화의 정량적 분석)

  • Jung, Han-Ju;Kang, Seok-Joo;Kim, Jin-Woo;Kim, Young-Hwan;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.783-790
    • /
    • 2011
  • Purpose: The zygoma (Zygomaticomaxillary) complexes make up a large portion of the orbital floor and lateral orbital walls. Zygoma fracture frequently causes the posteromedial displacement of bone fragments, and the collapse or overlapping of internal orbital walls. This process consequently can lead to the orbital volume change. The reduction of zygoma in an anterolateral direction may influence on the potential bone defect area of the internal orbital walls. Thus we performed the quantitative analysis of orbital volume change in zygoma fracture before and after operation. Methods: We conducted a retrospective study of preoperative and postoperative three-dimensional computed tomography scans in 39 patients with zygoma fractures who had not carried out orbital wall reconstruction. Orbital volume measurement was obtained through Aquarius Ver. 4.3.6 program and we compared the orbital volume change of injured orbit with that of the normal contralateral orbit. Results: The average orbital volume of normal orbit was 19.68 $cm^3$. Before the operation, the average orbital volume of injured orbit was 18.42 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.18 $cm^3$ (6.01%) on average. After operation, the average orbital volume of injured orbit was 20.81 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.17 $cm^3$ (5.92%) on average. Conclusion: There are considerable volume changes in zygoma fracture which did not accompany internal orbital wall fracture before and after operation. Our study reflects the change of bony frame, also that of all parts of the orbital wall, in addition to the bony defect area of orbital floor, in an isolated zygoma fracture so that it evaluates orbital volume change more accurately. Thus, the measurement of orbital volume in isolated zygoma fractures helps predict the degree of enophthalmos and decide a surgical plan.

Computed Tomographic Simulation of Craniospinal Irradiation (전산화 단층 촬영 장치를 이용한 뇌척수 조사의 치료 계획)

  • Lee CI;Kim HN;Oh TY;Hwang DS;Park NS;Kye CS;Kim YS
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 1999
  • The aim of this study is to improve the accuracy of field placement and junction between adjacent fields and block shielding through the use of a computed tomography(CT) simulator and virtual simulation. The information was acquired by assessment of Alderson Rando phantom image using CT simulator (I.Q. Xtra - Picker), determination of each field by virtual fluoroscopy of voxel IQ workstation AcQsim and colored critical structures that were obtained by contouring in virtual simulation. And also using a coronal, sagittal and axial view can determine the field and adjacent field gap correctly without calculation during the procedure. With the treatment planning by using the Helax TMS 4.0, the dose in the junction among the adjacent fields and the spinal cord and cribriform plate of the critical structure was evaluated by the dose volume histogram. The pilot image of coronal and sagittal view took about 2minutes and 26minutes to get 100 images. Image translation to the virtual simulation workstation took about 6minutes. Contouring a critical structure such as cribriform plate, spinal cord using a virtual fluoroscopy were eligible to determine a correct field and shielding. The process took about 20 minutes. As the result of the Helax planning, the dose distribution in adjacent field junction was ideal, and the dose level shows almost 100 percentage in the dose volume histogram of the spinal cord and cribriform plate CT simulation can get a correct therapy area due to enhancement of critical structures such as spinal cord and cribriform plate. In addition, using a Spiral CT scanner can be saved a lot of time to plan a simulation therefore this function can reduce difficulties to keep the patient position without any movements to the patient, physician and radiotherapy technician.

  • PDF

Endo- and Epi-cardial Boundary Detection of the Left Ventricle Using Intensity Distribution and Adaptive Gradient Profile in Cardiac CT Images (심장 CT 영상에서 밝기값 분포와 적응적 기울기 프로파일을 이용한 좌심실 내외벽 경계 검출)

  • Lee, Min-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, we propose an automatic segmentation method of the endo- and epicardial boundary by using ray-casting profile based on intensity distribution and gradient information in CT images. First, endo-cardial boundary points are detected by using adaptive thresholding and seeded region growing. To include papillary muscles inside the boundary, the endo-cardial boundary points are refined by using ray-casting based profile. Second, epi-cardial boundary points which have both a myocardial intensity value and a maximum gradient are detected by using ray-casting based adaptive gradient profile. Finally, to preserve an elliptical or circular shape, the endo- and epi-cardial boundary points are refined by using elliptical interpolation and B-spline curve fitting. Then, curvature-based contour fitting is performed to overcome problems associated with heterogeneity of the myocardium intensity and lack of clear delineation between myocardium and adjacent anatomic structures. To evaluate our method, we performed visual inspection, accuracy and processing time. For accuracy evaluation, average distance difference and overalpping region ratio between automatic segmentation and manual segmentation are calculated. Experimental results show that the average distnace difference was $0.56{\pm}0.24mm$. The overlapping region ratio was $82{\pm}4.2%$ on average. In all experimental datasets, the whole process of our method was finished within 1 second.

An Efficient Correction Process of CT-Simulator Couch with Current Diagnostic CT Scanners (진단용 CT-모의치료기 테이블의 효율적인 교정 방법)

  • Goo, Eun-Hoe;Lee, Jae-Seung;Cho, Jung-Keun;Moon, Seong-Kwon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.254-261
    • /
    • 2009
  • This study suggested that the table of CT-simulator and the laser alignment system using diagnostic CT scanner have an efficient method for improvement in alignment between the planned target center of traverse image with CT scanner. It was conducted on the daily QA when presented in the AAPM TG66 with correcting the laser alignment system using geometric trigonometric functions and investigated the effectiveness of correction methods as compared with those before and after correction. Before correction error was 3.82mm between the planned target center of image, the table longitudinal axis was twisted with 0.436o. The laser alignment system using geometric trigonometric functions in after correction was satisfied with tolerance limits of ${\pm}2mm$ when occurred about 0.7mm in errors between the planned target center. The table correction to satisfy the geometric accuracy is very inefficient over against the time and economic loss as well as technical limits in the case of application as only radiation therapy associated with CT-simulator with diagnostic CT scanner in use. But, the method which corrects the laser alignment system is economic and relatively simple with possibility of getting well geometric accuracy and we suppose that it is efficient method for applying in the clinic.

Evaluation of Automatic Image Segmentation for 3D Volume Measurement of Liver and Spleen Based on 3D Region-growing Algorithm using Animal Phantom (간과 비장의 체적을 구하기 위한 3차원 영역 확장 기반 자동 영상 분할 알고리즘의 동물팬텀을 이용한 성능검증)

  • Kim, Jin-Sung;Cho, June-Sik;Shin, Kyung-Sook;Kim, Jin-Hwan;Jeon, Ho-Sang;Cho, Gyu-Seong
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Living donor liver transplantation is increasingly performed as an alternative to cadaveric transplantation. Preoperative screening of the donor candidates is very important. The quality, size, and vascular and biliary anatomy of the liver are best assessed with magnetic resonance (MR) imaging or computed tomography (CT). In particular, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Preoperative liver segmentation has proved useful for measuring the graft volume before living donor liver transplantations in previous studies. In these studies, the liver segments were manually delineated on each image section. The delineated areas were multiplied by the section thickness to obtain volumes and summed to obtain the total volume of the liver segments. This process is tedious and time consuming. To compensate for this problem, automatic segmentation techniques have been proposed with multiplanar CT images. These methods involve the use of sequences of thresholding, morphologic operations (ie, mathematic operations, such as image dilation, erosion, opening, and closing, that are based on shape), and 3D region growing methods. These techniques are complex but require a few computation times. We made a phantom for volume measurement with pig and evaluated actual volume of spleen and liver of phantom. The results represent that our semiautomatic volume measurement algorithm shows a good accuracy and repeatability with actual volume of phantom and possibility for clinical use to assist physician as a measuring tool.

  • PDF