• Title/Summary/Keyword: Process of formation

Search Result 5,729, Processing Time 0.036 seconds

An assignment method for part-machine cell formation problem in the presence of multiple process routes

  • Won, You-Kyung;Kim, Sehun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.236-243
    • /
    • 1994
  • In this paper we consider the part-machine cell formation decision of the generalized Group Technology(GT) problem in which multiple process routes can be generated for each part. The existing p-median model and similarity coefficient algorithm can solve only small-sized or well-structured cases. We suggest an assignment method for the cell formation problem. This method uses an assignment model which is a simple linear programming. Numerical examples show that our assignment method provides good separable cells formation even for large-sized and ill-structured problems.

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

Neck Formation in Drawing Processes of Fibers

  • Chung, Kwansoo;Yoon, Hyungsop;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.140-143
    • /
    • 2001
  • To better understand the formation of necking in drawing processes of fibers, strain distributions during drawing processes have been analyzed. For simplicity, one-dimensional incompressible steady flow at a constant temperature was assumed and quasi-static model was used. To describe mechanical properties of solid polymers, non-linear visco-plastic material properties were assumed using the power law type hardening and rate-sensitive equation. The effects of various parameters on the neck formation were matematically analyzed. As material property parameters, strain-hardening parameter, visco-elastic coefficient and strain-rate sensitivity were considered and, for process parameters, the drawing ratio and the process length were considered. It was found that rate-insensitive materials do not reach a steady flow state and the rate-sensitivity plays a key role to have a steady flow. Also, the neck formation is mainly affected by material properties, especially for the quasi-static model. If the process length changes, the strain distribution was found to be proportionally re-distributed along the process line by the factor of the total length change.

  • PDF

Process Optimization of the Contact Formation for High Efficiency Solar Cells Using Neural Networks and Genetic Algorithms (신경망과 유전알고리즘을 이용한 고효율 태양전지 접촉형성 공정 최적화)

  • Jung, Se-Won;Lee, Sung-Joon;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2075-2082
    • /
    • 2006
  • This paper presents modeling and optimization techniques for hish efficiency solar cell process on single-crystalline float zone (FZ) wafers. Among a sequence of multiple steps of fabrication, the followings are the most sensitive steps for the contact formation: 1) Emitter formation by diffusion; 2) Anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); 3) Screen-printing for front and back metalization; and 4) Contact formation by firing. In order to increase the performance of solar cells in terms of efficiency, the contact formation process is modeled and optimized using neural networks and genetic algorithms, respectively. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time and fabrication costs. The experiments were designed by using central composite design which consists of 24 factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the fabricated solar cell is modeled using neural networks. Established efficiency model is then used for the analysis of the process characteristics and process optimization for more efficient solar cell fabrication.

Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames (동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

The formation of Paper and the Measurement of Formation

  • Komppa, Olavi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.2
    • /
    • pp.76-82
    • /
    • 1997
  • In paper the evenness of planar distribution of mass in a small scale is called formation (orbetter:mass formation). Traditionally formation has been assessed visually, by looking the sheet of paper against transmitted light. Different kinds of optieal testers are being usd to obtain quantitative rankings htat would be independent of the observer but would well correspond to the visual assessment. However, various raw-material and process factors do influence light trans-mittance in paper and do impair the correspondence between basis weight and the optical formation measurement (or visual assessment). As the optical formation test methods do not incorporate an efficient calib ration routine, the formation of the sophisticated paper grades of today the is rather difficult to measure optically and may lead to erroneous results. It may be concluded that the optical measurement is not suitable for paper grades with high filler content. coating, heavy calendering or that are made of heavily beaten pulp, nordoes it apply for dyed or printed papers. For this reason, visual assessment and optical evaluation shoild be replaced with a measurement that gives reliable results independent on paper grode and manufacturing process. Formation measuremend based on beta radiation is suitable for all paper grades regardless to the material contents or process treatment. It is possible to measure even dyed or printed samples. Thonks to a sim ple and relioble calibration, the results are converted to real basis weight balues that remain reliable even with time. The only beta tester commercially available is the AMBERTEC Beta Formation Tester. Formation of paper does vary locally in the web. Typically there exists a formation profile, too similarly to other properties of paper. Therefore, formation should ? ays be expressed as a mean of a sufficient amount of parallel determinations. All formation measurements should be calibrated against basis weight.

  • PDF

A Study of the Formation Process of the Fabric Drapes

  • Mizutani, Chiyomi;Baba, Takeichirou;Amano, Toshihiko
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.111-111
    • /
    • 2003
  • In our experiments using a new apparatus, the drape formation process was found to consist of three stages, seeds generation, their development and the final stabilizing stages. A new parameter R evaluating the shape of the drape was defined in terms of the vertical projection of the drape. Both drape coefficient and R-parameter are expected to be useful for analyzing the formation process of the fabric drape quantitatively.

  • PDF

Observation of Nugget Formation Mechanism by using High Speed Camera (고속카메라를 이용한 저항 점 용접의 너겟 형성 메커니즘 관찰)

  • 조용준;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.43-45
    • /
    • 2000
  • Resistance Spot Welding has been one of the important process in the sheet metal fabrication of auto-body industry It is well known that the nugget formation of RSW is the major factor for the strength of the body. A high speed camera was used to consider initial melting and growth of the weld nugget in order to find out the nugget formation mechanism. It was observed that such mechanism had an effect on the dynamic resistance, which was a process parameter of resistance spot welding. Also, the relationship between the mechanism and process parameter was considered for the industrial application.

  • PDF

Thermodynamic Approach to the Mixture Formation Process of Evaporative Diesel Spray (증발디젤분무의 혼합기 형성과정에 대한 열역학적 접근)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.201-206
    • /
    • 2009
  • The focus of this work is placed on the analysis of the mixture formation process under the evaporative diesel-free spray conditions. In order to examine homogeneity of mixture within the vapor phase region of the injected spray, image analysis was carried out based on the entropy of statistical thermodynamics. As an experimental parameter, the injection pressure and ambient gas density were selected, and effects of the injection pressure and density variation of ambient gas on the mixture formation process in the evaporative diesel spray were investigated. In the case of application of the thermodynamic entropy analysis to evaporative diesel spray, the value of the dimensionless entropy always increases with increase in time from injection start. Consequently, the dimensionless entropy in the case of the higher injection pressure is higher than that of lower injection pressure during initial injection period.

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.