• Title/Summary/Keyword: Process of Form Generation

Search Result 293, Processing Time 0.023 seconds

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

Hologram Generation of 3D Objects Using Multiple Orthographic View Images

  • Kim, Min-Su;Baasantseren, Ganbat;Kim, Nam;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.269-274
    • /
    • 2008
  • We propose a new synthesis method for the hologram of 3D objects using incoherent multiple orthographic view images. The 3D objects are captured and their multiple orthographic view images are generated from the captured image. Each orthographic view image is numerically overridden by the plane wave propagating in the direction of the corresponding view angle and integrated to form a point in the hologram plane. By repeating this process for all orthographic view images, we can generate the Fourier hologram of the 3D objects.

Optimum Life Cycle Cost Design of Steel Box Girder Bridges (강상형교의 최적 Life Cycle Cost 설계)

  • 조효남;민대홍;김구선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.151-158
    • /
    • 1998
  • This paper presents an optimal decision model for minimizing the life-cycle cost of steel box girder bridges. The point is that it takes into account service life process as a whole, and the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs and expected failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. The optimal solution identifies those values of the decision variables that result in minimum expected total cost. The performance constraints in the form of flexural failure and shear failure are those specified in the design code. Based on extensive numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on life-cycle cost approach proposed in this study provides a lot more rational and economical design, and thus the proposed approach will propose the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Development of Design Oriented Finite Element Program for DAD Integration (구조설계의 CAD화를 위한 설계지향 유한요소 프로그림의 개발에 관한 연구)

  • 이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.1-6
    • /
    • 1989
  • To intergrate finite elements Into CAD enviroment, design oriented structure of the finite element program is desirable. For this purpose a program called CFEP has been developed. Generation of geometry data is independently treated in the program to ease the modification of property or loading data. By conveniently handling the large number of load cases with various load combinations, and by comprehensively reporting the results through inclusive output for the multiple analyses, the program greatly facilitates the design process. Interfacing with interactive graphic post-processor, the results of analyses and final designed values are obtained in a compact and comprehensive manner. The paper also describes necessary tasks for developing such program on the economical microcomputer. Sample output of printed and graphical form well illustrates the procedure.

  • PDF

Enhancement of Surface Diffusivity for Waviness Evolution on Heteroepitaxial Thin Films

  • Kim, Yun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.287-292
    • /
    • 2014
  • The present study deals with a numerical analysis on the island growth of heteroepitaxial thin-films through local surface diffusivity enhancement. A non-linear governing equation for the surface waviness evolution in lattice-mismatched material systems is developed for the case of spatially-varying surface diffusivity. Results show that a flat film that is stable under constant diffusivity conditions evolves to form nanostructures upon externally-induced spatial diffusivity modulation. The periodicity of waviness can be controlled by changing the modulation parameters, which allows for generation of pattern arrays. The present study therefore points towards a post-deposition treatment technique that achieves controllability and order in the structure formation process for applications in nanoelectronics and thin-film devices.

network engineering issues in the UMTS development perspective

  • Giovanni Colombo;Magnani, Nicola-Pio;Giuseppe Minerva;Enrico Scarrone
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.18-34
    • /
    • 2000
  • The evolution of mobile communications is inducting several new issues belonging to the system engineering disciplines. this paper tires to underline some of the most important problems staring room the novel requirements and the application characteristics expected for Third Generation Mobile System. Based on these new service peculiarities. the radio resource control and the architectural solutions to be chosen for the Mobile core network are becoming key issues to be investigated for the forthcoming configurations. Particularly. the service acceptance control and the perspective of integration with the IP (internet Protocol) context are of great importance for the definition of the radio control functions and the specification of the switching and nobility control features respectively.The paper presents some basic considerations on the cellular planning issues arising in W-CDMA ( wideband -code division Multiple access) systems. by underlying the most significant innovative elements that are to be introduced in the planning process form the mobile operator viewpoint..

  • PDF

Development of Phenolic SMC for The Rail (철도차량 및 지하철 불연 내장재 페놀 SMC 개발)

  • Kim Young-keun;Shin Dong-hyok;Kim Young-min;Park Joung-wuk;Min Jae-Jun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.55-58
    • /
    • 2004
  • Phenolin resin, prepared form phenol and formaldehyde, is one of the oldest thermosetting resins available. Phenolic resins are cured via condensation polymerization with evolution of water, which in molding process is a big problem. The use of phenolic resins in glass fiber composites is growing, primarily due to their low flame spread, low smoke generation and low smoke toxicity properties. SMC of phenolics has been rearched since the 1986. The technology challenge was to match resin viscosity, handling and cure with those for the polyester SMC to avoid any special processing for fabricators and end users. Phenolic SMC was chosen because of the ease of molding to the required shape with light- weight, thin wall structure and with excellent fire protection.

  • PDF

Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique (전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구)

  • Shin, Sung-Chul;Kim, Ji-Won;Kwon, Se-Hun;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.530-538
    • /
    • 2016
  • There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.

Distributed AI Learning-based Proof-of-Work Consensus Algorithm (분산 인공지능 학습 기반 작업증명 합의알고리즘)

  • Won-Boo Chae;Jong-Sou Park
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The proof-of-work consensus algorithm used by most blockchains is causing a massive waste of computing resources in the form of mining. A useful proof-of-work consensus algorithm has been studied to reduce the waste of computing resources in proof-of-work, but there are still resource waste and mining centralization problems when creating blocks. In this paper, the problem of resource waste in block generation was solved by replacing the relatively inefficient computation process for block generation with distributed artificial intelligence model learning. In addition, by providing fair rewards to nodes participating in the learning process, nodes with weak computing power were motivated to participate, and performance similar to the existing centralized AI learning method was maintained. To show the validity of the proposed methodology, we implemented a blockchain network capable of distributed AI learning and experimented with reward distribution through resource verification, and compared the results of the existing centralized learning method and the blockchain distributed AI learning method. In addition, as a future study, the thesis was concluded by suggesting problems and development directions that may occur when expanding the blockchain main network and artificial intelligence model.

State of The Art in Semiconductor Package for Mobile Devices

  • Kim, Jin Young;Lee, Seung Jae
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.23-34
    • /
    • 2013
  • Over the past several decades in the microelectronics industry, devices have gotten smaller, thinner, and lighter, without any accompanying degradation in quality, performance, and reliability. One permanent and deniable trend in packaging as well as wafer fabrication industry is system integration. The proliferating options for system integration, recently, are driving change across the overall semiconductor industry, requiring more investment in developing, ramping and supporting new die-, wafer- and board-level solution. The trend toward 3D system integration and miniaturization in a small form factor has accelerated even more with the introduction of smartphones and tablets. In this paper, the key issues and state of the art for system integration in the packaging process are introduced, especially, focusing on ease transition to next generation packaging technologies like through silicon via (TSV), 3D wafer-level fan-out (WLFO), and chip-on-chip interconnection. In addition, effective solutions like fine pitch copper pillar and MEMS packaing of both advanced and legacy products are described with several examples.