• Title/Summary/Keyword: Process memory

Search Result 1,755, Processing Time 0.027 seconds

The Methodology of Systematic Global Calibration for Process Simulator

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.180-184
    • /
    • 2004
  • This paper proposes a novel methodology of systematic global calibration and validates its accuracy and efficiency with application to memory and logic devices. With 175 SIMS profiles which cover the range of conditions of implant and diffusion processes in the fabrication lines, the dominant diffusion phenomenon in each process temperature region has been determined. Using the dual-pearson implant model and fully-coupled diffusion model, the calibration was performed systematically. We applied the globally calibrated process simulator parameters to memory and logic devices to predict the optimum process conditions for target device characteristics.

Widely Tunable Adaptive Resolution-controlled Read-sensing Reference Current Generation for Reliable PRAM Data Read at Scaled Technologies

  • Park, Mu-hui;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.363-369
    • /
    • 2017
  • Phase-change random access memory (PRAM) has been emerged as a potential memory due to its excellent scalability, non-volatility, and random accessibility. But, as the cell current is reducing due to cell size scaling, the read-sensing window margin is also decreasing due to increased variation of cell performance distribution, resulting in a substantial loss of yield. To cope with this problem, a novel adaptive read-sensing reference current generation scheme is proposed, whose trimming range and resolution are adaptively controlled depending on process conditions. Performance evaluation in a 58-nm CMOS process indicated that the proposed read-sensing reference current scheme allowed the integral nonlinearity (INL) to be improved from 10.3 LSB to 2.14 LSB (79% reduction), and the differential nonlinearity (DNL) from 2.29 LSB to 0.94 LSB (59% reduction).

Efficient Native Processing Modules for Interactive DTV Middleware Based on the Small Footprint Set-Top Box

  • Shin, Sang-Myeong;Im, Dong-Gi;Jung, Min-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1617-1627
    • /
    • 2006
  • The concept of middleware for digital TV receivers is not new one. Using middleware for digital TV development has a number of advantages. It makes it easier for manufacturers to hide differences in the underlying hardware. It also offers a standard platform for application developers. Digital TV middleware enables set-top boxes(STBs) to run video, audio, and applications. The main concern of digital TV middleware is now to reduce its memory usage because most STBs in the market are small footprint. In this paper, we propose several ideas about how to reduce the required memory size on the runtime area of DTV middleware using a new native process technology. Our proposed system has two components; the Efficient Native Process Module, and Enhanced Native Interface APIs for concurrent native modules. With our approach, the required memory reduced from 50% up to 75% compared with the traditional approach. It can be suitable for low end STBs of very low hardware limitation.

  • PDF

A Study on Design of Underactuated Robot Hand driven by Shape Memory Alloy (형상기억합금 Underactuated 로봇 핸드의 설계에 관한 연구)

  • Kim, Gwang-Ho;Shin, Sang-Ho;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • The lightweight and compact actuator with high power is required to perform motion with multiple degrees of freedom. To reduce the size and inertia of a robot manipulator, the mechanical transmission system is used. The shape memory alloy(SMA) is similar to the muscle-tendon-bone network of a human hand. However, there are some drawback and nonlinearity, such as the hysteresis and the stress dependence. In this paper, the design of the underactuated robot hand is studied. The 3-finger dexterous hand is driven by the SMA actuator using segmental mechanism. This digital approach enables to overcome the nonlinearity of SMA wire. The translational displacement of SMA actuator required to bend a phalanx of the underactuated robot hand is estimated and the bending angle of the underactuated robot hand according to input displacement of SMA actuator is predicted by the multi-body dynamic analysis.

A Regular Expression Matching Algorithm Based on High-Efficient Finite Automaton

  • Wang, Jianhua;Cheng, Lianglun;Liu, Jun
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.78-86
    • /
    • 2014
  • Aiming to solve the problems of high memory access and big storage space and long matching time in the regular expression matching of extended finite automaton (XFA), a new regular expression matching algorithm based on high-efficient finite automaton is presented in this paper. The basic idea of the new algorithm is that some extra judging instruments are added at the starting state in order to reduce any unnecessary transition paths as well as to eliminate any unnecessary state transitions. Consequently, the problems of high memory access consumption and big storage space and long matching time during the regular expression matching process of XFA can be efficiently improved. The simulation results convey that our proposed scheme can lower approximately 40% memory access, save about 45% storage space consumption, and reduce about 12% matching time during the same regular expression matching process compared with XFA, but without degrading the matching quality.

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim S. C.;Park Y. P.;Park N, C.;Choi S, B.
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.163-170
    • /
    • 2005
  • In this work, we propose a new type of HDD Load/unload (L/UL) suspension featuring shape memory alloy (SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material

  • Faravelli, Lucia;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1041-1056
    • /
    • 2010
  • This paper investigates the possibility of a strategy for an automatic full recover of a structural component undergoing loading-unloading (fatigue) cycles: full recover means here that no replacement is required at the end of the mission. The goal is to obtain a material capable of self healing earlier before the damage becomes irreversible. Attention is focused on metallic materials, and in particular on shape memory alloys, for which the recovering policy just relies on thermal treatments. The results of several fatigue tests are first reported to acquire a deep understanding of the physical process. Then, for cycles of constant amplitude, the self-healing objective is achieved by mounting, on the structural component of interest, a suitable microcontroller. Its input, from suitable sensors, covers the current stress and strain in the alloy. The microcontroller elaborates from the input the value of a decisional parameter and activates the thermal process when a threshold is overcome.

Hierarchical Haze Removal Using Dark Channel Prior (Dark Channel Prior를 이용한 계층적 영상 안개 제거 알고리즘)

  • Kim, Jin-Hwan;Kim, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.457-464
    • /
    • 2010
  • The haze removal algorithm using dark channel prior, which was proposed by He et al., is an efficient algorithm and presents impressive results. But its high memory and computational requirements limit its applications. In this paper, we propose a method to improve the memory usage and calculation speed. We notice that the matting process accounts for most calculation time, so we replace the matting process with a fast bilateral filtering scheme. Using the bilateral filter, we can reduce the memory usage, but its computational complexity is still high. To reduce the computational complexity as well, we adapt a hierarchical structure for the bilateral filtering. Experimental results show that the proposed algorithm can remove haze in a picture effectively, while requiring much less computations than the He et al.'s method.

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim, Soo-Cheol;Park, Young-Pil;Park, No-Cheol;Choi, Seung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • In this work, we propose a new type of HDD Load/Unload(L/UL) suspension featuring shape memory alloy(SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

Multi-layered attentional peephole convolutional LSTM for abstractive text summarization

  • Rahman, Md. Motiur;Siddiqui, Fazlul Hasan
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.288-298
    • /
    • 2021
  • Abstractive text summarization is a process of making a summary of a given text by paraphrasing the facts of the text while keeping the meaning intact. The manmade summary generation process is laborious and time-consuming. We present here a summary generation model that is based on multilayered attentional peephole convolutional long short-term memory (MAPCoL; LSTM) in order to extract abstractive summaries of large text in an automated manner. We added the concept of attention in a peephole convolutional LSTM to improve the overall quality of a summary by giving weights to important parts of the source text during training. We evaluated the performance with regard to semantic coherence of our MAPCoL model over a popular dataset named CNN/Daily Mail, and found that MAPCoL outperformed other traditional LSTM-based models. We found improvements in the performance of MAPCoL in different internal settings when compared to state-of-the-art models of abstractive text summarization.