• 제목/요약/키워드: Process heat

검색결과 5,853건 처리시간 0.032초

다관형 잠열축열장치의 축열특성연구 -물을 매체로 한 축열 및 방열과정 분석- (Study on the Thermal Storage Characteristics of a Multi-capsule type LTES System -Analysis for Heat Charging and Discharging Process for Water Flow-)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • 제19권1호
    • /
    • pp.62-69
    • /
    • 1994
  • This study was designed to seek information on the heat charging and discharging characteristics of a multi-capsule type LTES(Latent Heat of Fusion Thermal Energy Storage) system, and especially prediction equation of outlet water temperature from the system. During heat charging process, the water temperature in the LTES tank increased very slowly in comparison with a predicted one and was kept near the melting point of the PCM for about 25 minutes. During heat discharging process, the latent heat discharging period of the outlet water temperature became longer as the inlet water temperature became higher and/or mass flow rate became lower. The dimensionless temperature of the outlet water was predicted by linking three equations of ${\theta}=1.1Exp(-{\tau}/0.82)$, ${\theta}=-0.06{\tau}+0.3$, ${\theta}=0.8Exp(-{\tau}/1.4)$ ($r^2{\leq}0.88$) depending on discharging period regardless of mass flow rates on the case of the inlet water temperature at $21.5^{\circ}C$.

  • PDF

A Review of Heat and Mass Transfer Analysis for Absorption Process

  • Kim, Jin-Kyeong;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.131-137
    • /
    • 2006
  • The absorber in which heat and mass transfer phenomena occur simultaneously is one of the most critical components in the absorption system. It has the most significant influence on the performance and the size of the absorption system. During the absorption process, heat and mass transfer resistances exist in both liquid and vapor regions, so that the heat transfer mode should be carefully selected to reduce them. The objective of this paper is to review the previous papers analysing mathematical models of simultaneous heat and mass transfer phenomena during the absorption process. The most conventional working fluids ($H_2O$LiBr and $NH_3/H_2O$) are considered and the most common absorption modes (falling film and bubble mode) are dealt with in this review.

CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계 (Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE)

  • 이형욱;윤덕재;이근안;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

Design and the characteristic analysis of experimental system for automatic control education

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.350-350
    • /
    • 2000
  • Since the heat exchange system, such as the boiler of power plant, gas turbine, and radiator require a high rate heat efficiency and the efficiency of these systems is depended on the control methods. However, it is important f3r operator to understand control system of these systems. In order to properly apply control equipment to these process control systems, such as boiler, any other heat process, or process control system it is necessary to understand the basic aspects and operation principle of the process that relate control, interrelationships of the process characteristics, and the dynamics that are involved. Generally, PID controllers are used in these systems but it is difficult for engineer to understand the complex dynamics and the tuning method because of the coupling action and disturbance in the system loop. In this paper, we design an effective experimental system fur automatic control education and analyze its characteristics through experimental system and industrial plant control software to study how they can team automatic control system by experiments.

  • PDF

아크 스폿 용접의 입열효율 계산 방법에 관한 연구 (A Study on the Calculating Method of the Heat Input Efficiency in Arcspot Welding)

  • 장경복;조상명
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1065-1070
    • /
    • 2003
  • In arc spot welding process, the arc is not moving and heat input is concentrated in one spot so that the heat input efficiency of arc is higher than that of GMAW. In other words, the heat input efficiency of arc change during weld time because arc start is done in spot and weld metal is filled. Therefore, the heat input model of arc spot welding should be different from that of general GMAW. In present study, the calculating model of heat input efficiency in arc spot welding was suggested by temperature monitoring near spot in arc spot welding of copper plate. The result showed that the heat input efficiency of arc was changed three times during weld time. The accuracy of calculating method of heat input efficiency was verified by heat transfer analysis of arc spot welding process using finite element method.

金屬熱處理를 위한 高溫面의 膜沸騰急冷却에 관한 硏究 (第1報, 炭素鋼 켄칭 過程의 冷却曲線과 過渡沸騰熱傳達) (A Study on the Film Boiling-Quenching Process of the Hot Surface for the Heat Treatment of Metals (1st Report, Cooling Curves and Transient Boiling Heat Transfer during the Quenching Process of Carbon Steel))

  • 윤석훈;홍영표;김경근;정대인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제15권3호
    • /
    • pp.57-65
    • /
    • 1991
  • The quenching of steels by water is one of the important problems in engineering for the applications of heat treatment or continuous casting process, but the fundamental researches by the theoretical approaches have not been satisfactorily improved yet. The very rapid cooling problems by the thermal conduction including the latent heat of phase transformation in steel and the transient boiling heat transfer of water on the surface of the steel covering from $850^{\circ}C$ to $20^{\circ}C$ are the key problems of heat treatment. The present quenching experiments are performed for the cylindrical specimens of carbon steel, S45C of diameters (12-30). Nonlinear transient heat conduction and transient boiling heat transfer problem of water on the surface of specimens is analyzed by the numerical method of inverse heat conduction problem. The conditions for the calculation are that the initial temperature of specimens is $820^{\circ}C$ and the cooling water in bath are $20^{\circ}C$,$40^{\circ}C$,$60^{\circ}C$,$80^{\circ}C$,$95^{\circ}C$ with no agitation.

  • PDF

개량된 등가비열법을 이용한 상변화 열전달의 수치해석 (Application of the Modified Equivalent Specific Method to the Phase Change Heat Transfer)

  • 목진호
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.814-819
    • /
    • 2005
  • The phase change heat transfer has been applied to the processes of machines as well as of manufacturing. The cycle in a heat exchanger includes the phase change phenomena of coolant for air conditioning, the solidification in casting process makes use of the characteristics of phase change of metal, and the welding also proceeds with melting and solidification. To predict the phase change processes, the experimental and numerical approaches are available. In the case of numerical analysis, the Enthalpy method is most widely applied to the phase change problem, comparing to the other numerical methods, i.e. the Equivalent Specific Heat method and the Temperature Recovery method. It's because that the Enthalpy method is accurate and straightforward. The Enthalpy method does not include any correction step while the correction of final temperature field is inevitable in the Equivalent Specific Heat method and the Temperature Recovery method. When the temperature field is to be used in the calculation, however, there must be converting process from enthalpy to temperature in the calculation scheme of Enthalpy method. In this study, an improved method for the Equivalent Specific Heat method is introduced whose method dose not include the correction steps and takes temperature as an independent variable so that the converting between enthalpy and temperature does not need any more. The improved method is applied to the solidification process of pure metal to see the differences of conventional and improved methods.

핀이 부착된 MF증발관의 열전달 특성에 대한 해석적 연구 (An Analytical Study on the Heat Transfer Characteristics of MF Evaporation Tubes Attached with a Fin)

  • 박용석;성홍석;서정세
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.48-56
    • /
    • 2021
  • In this study, the heat transfer process around the finned channel tubes is numerically examined. Serially arranged tubes of an evaporator were used for heat exchange. The numerical analysis results confirmed that the vortex generated at the rear of the channel pipe was caused by the fin. Furthermore, it was also confirmed that the temperature difference was large between the inlet and outlet ends of the fin. The temperature of the location where the fin was attached to the channel pipe was found to be close to the surface temperature of the channel wall. However, the temperature rose rapidly closer to the ambient air temperature of 350 K towards the fin end, located at a distance of 0.035 m; it was found to have a significant influence on the heat transfer around the fin-attached channel tube. The wider the vertical flow path, the lower the total heat transfer coefficient. However, the overall heat transfer coefficient increased as the horizontal flow path narrowed. The increment is attributed to an increase in the heat transfer amount due to increased heat transfer surface.

Chemical Strengthening Involving Outward Diffusion Process of Na+ Ion in Iron-containing Soda-lime Silicate Glass

  • Choi, Hyun-Bin;Kang, Eun-Tae
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.133-136
    • /
    • 2015
  • The outward diffusion of $Na^+$ ions in iron-bearing soda lime silicate glass via oxidation heat treatment before the ion exchange process is artificially induced in order to increase the amount of ions exchanged during the ion exchange process. The effect of the addition process is analyzed through measuring the bending strength, the weight change, and the inter-diffusion coefficient after the ion exchange process. The glass strength is increased when the outward diffusion of $Na^+$ ions via oxidation heat treatment before the ion exchange process is added. For the glass subjected to the additional process, the weight change and diffusion depth increase compared with the glass not subjected to the process. The interdiffusion coefficient is also slightly increased as a result of the additional process.

수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구 (A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production)

  • 신재선;조성진;최석훈;파라즈카심;이흥래;박제호;이원재;이의수;박상진
    • Korean Chemical Engineering Research
    • /
    • 제52권4호
    • /
    • pp.459-466
    • /
    • 2014
  • 열화학적인 수소 생산 공정 중 하나인 S-I Cycle은 요오드와 황을 이용한 수소 생산 공정으로써 물 분자로부터 수소 분자를 얻어내는 순환 공정이다. 수소 생산 공정에 열을 공급하고자 하는 초고온 원자로(VHTR; Very High Temperature Reactor)는 원자로에서 수소 생산 공정으로 방사능 없이 안전하게 열을 전달하기 위하여 중간열교환기(IHX; Intermediate Heat Exchanger)가 필요하다. 본 연구에서는 수소 생산공정과 초고온 원자로간의 중간 열교환 공정을 모사하여 운전압력 및 작동 유체의 변화에 따른 중간 열교환기의 효율을 계산하고 가장 경제적인 중간 열교환기를 설계하기 위한 공정 조건을 도출하였다.