• Title/Summary/Keyword: Process heat

Search Result 5,853, Processing Time 0.026 seconds

A Numerical Analysis for the Performance Improvement of a Channel Heat Exchanger (채널형 열교환기의 성능향상에 관한 수치해석)

  • Jang, Byung-Hyun;Kim, Si-Peom;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 2012
  • The shell & tube heat exchanger is used throughout various industries because of its inexpensive cost and handiness when it comes to maintenance. However, it has many design elements such as the location and the shape of inlet and outlet, the numbers of tubes and baffles, etc. Also, the flow within the shell and the heat transfer are complex. This paper is performed numerical analysis to evaluate capabilities of difference in temperature and pressure drop, which are the performance of channel heat exchanger, one of different types of shell & tube exchanger. Also, factors that affect the performance of channel heat exchanger were selected through design of experiment along with key factors.

Characterizing Small-scale Mechanical Behaviors of Heat-treated Materials with Nanoindentation Technique (나노압입시험법을 이용한 열처리 소재의 미소 변형 거동 평가)

  • Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.72-79
    • /
    • 2020
  • To improve the mechanical properties of most structural materials for industrial applications, the control of microstructure is essential by heat treatment process or plastic deformation process. Since the mechanical behavior of structural materials is significantly influenced by their microstructure, it is inevitably preceded to understand the relationship between microstructure and strengthening mechanisms of materials which can be easily changed by heat treatment. In this regard, the nanoindentation test is useful technique for analyzing the influence of the localized microstructural change on small-scale mechanical behavior of various structural materials. Here, the interesting studies performed on various heat-treated materials are reviewed with focus on micromechanical properties obtained by nanoindentation, which are reported in the available literature.

Mechanical Properties and Workability of Non Heat Treated Steel on Cold Forming of High Tension Bolts (고장력볼트 냉간압조용 비조질강 특성에 관한 연구)

  • Hwang, B.K.;Jung, T.W.;Lee, Y.S.;Choi, J.M.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.210-216
    • /
    • 2010
  • The importance and interests for saving of energy and cost in industry has grown up. Therefore, process optimization to reduce the process and energy become one of the most important things. The non-heat treated steel, post-heat-treated is no necessary, has attractive points as structural materials. However, establishment of mechanical properties is necessary to apply non-heat-treated steel to structural parts. In this study, for non-heat-treated steel and pre-heat-treated steel, we have investigated microstructure, hardness, the tensile strength, compressive strength. And the FE analysis technology to predict the hardness value of forged part is developed on micro-alloyed steel forged part.

Consideration on the T-history Method for Measuring Heat of Fusion of Phase Change Materials (PCM의 잠열측정을 위한 T-history법에 대한 고찰)

  • 박창현;최주환;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1223-1229
    • /
    • 2001
  • Though conventional calorimetry methods such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) are used generally in measuring heat of fusion, T-history method has the advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermal properties of inhomogeneous phase change materials (PCMs) in sealed tubes. However, random criteria (a degree of supercooling) used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

  • PDF

Improvement of the T-history Method to Measure Heat of Fusion for Phase Change Materials

  • Hong, Hi-Ki;Park, Chang-Hyun;Choi, Ju-Hwan;Peek, Jong-Hyeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • Though conventional calorimetry methods such as differential scanning calorimetry and differential thermal analysis are used generally in measuring heat of fusion, T-history method has advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermophyical properties of in-homogeneous phase change materials in sealed tubes. However, the degree of supercooling used in selecting a range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

Improvement of Physical and Drying Properties of Large Diameter and Long Axis Moso Bamboo (Phyllostachys pubescens) Poles Using Heat Treatment

  • Kyoung-Jung KIM;Young-Jin KIM;Se-Yeong PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.447-447
    • /
    • 2023
  • This study aimed to convert underutilized moso bamboo into high-value added products such as fences, interior materials, lighting fixtures, and accessories. Green moso bamboo poles with a diameter of approximately 10 cm and a length of approximately 3.7 m were heat treated at 140℃ using a large-scale kiln. The processing time was meticulously adjusted through various stages, including pretreatment (6-8 hours at 60℃), cooking (8-10 hours at 100℃), steaming (26-30 hours at 120℃), heating (4-6 hours at 140℃), and finally, cooling (below 80℃). A meticulously designed heat treatment process has enabled efficient mass production of moso bamboo poles with improved qualities, including minimal splitting, moisture levels below 3%, and a specific gravity of 1.05. The focus of this study was to present the physical and drying properties, such as color, dimensional change, specific gravity, moisture content, and splitting, observed during the heat treatment process.

Development of Thruster Heat Shield for Satellite (인공위성 추력기 열차폐막 개발)

  • Lee Hae-Heon;Jang Ki-Won;Lee Jae-Won;Yu Myoung-Jong;Lee Kyun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.27-30
    • /
    • 2005
  • Hanwha Corporation succeeded in domestic development of thruster heat shield for KOMPSAT-2 propulsion subsystem partly. Thruster heat shield, one of the main components of DTM, is designed to prevent the critical radiative heat exchange between thruster and satellite during firing. To overcome the manufacturing difficulties, an electro-forming process is preferred to classical welding process. In this case, an inner diameter of a new shield will be decreased a little due to the change of manufacturing process. The interference problem between thruster nozzle and heat shield was investigated through structural analysis by KARI. Hanwha manufactured heat shield based on the analysis results. In this paper, full development process is described for design, analysis, manufacturing of heat shield.

  • PDF

An Experimental Study on the Temperature Distribution according to the Heat Sink Height of 30W LED Floodlight (30W급 LED 투광등 히트싱크 높이변화에 따른 온도분포에 관한 실험적 연구)

  • Kim, Dae-Un;Chung, Han-Shik;Jeong, Hyo-Min;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.150-156
    • /
    • 2017
  • This study tests the characteristics of heat radiation by applying the pin-height variables to 30-W LED floodlights. The angle of the heat sink enables us to identify the characteristics of the heat radiation based on the temperature distribution. The results of the study are as follows. When the heat sinks are set towards the ground, the heat transfer decreases in speed only to expands the temperature distribution, which adversely affects the characteristics of heat radiation and expands the temperature distribution of PCB with the LED chip. We verify that the characteristics of heat radiation are adversely affected when the height of the cooling pin decreases and the heat radiation area decreases, which impedes the heat transfer and increases the temperature distribution on the heat sink.

Study on the Optimum Design of Ground Source Heat Pumps (지열원 히트펌프 시스템의 최적 설계 기법 연구)

  • Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2018
  • Among the various ground source heat pump systems, vertical-type heat pump systems have been distributed greatly. Most of the vertical-type ground source heat pump systems have been designed based on the Korean Ministry of Knowledge Economy Announcement in Korea. In this study, the design process of the vertical-type ground source heat pump system in the announcement was analyzed, and the effects of the design parameters on the ground loop heat exchanger were investigated. Borehole thermal conductivity was the highest dominant design parameter for ground loop heat exchangers. The borehole thermal conductivity was changed according to the pipe and grout thermal conductivity. For optimal design of the ground heat pump system, it is highly recommended that the design process in the announcement will be revised to adopt the various tubes and grout which have higher thermal conductivity. In addition, the certification standard for heat pump unit should be revised to develop the heat pump with a small flow rate.

A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(II) -Comparison of Hardening Characteristics by the Parts Applied Heat Treatment- (금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(II) - 표면경화의 적용 부위에 따른 열처리 특성의 차이 -)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1048-1054
    • /
    • 2011
  • Laser surface hardening process is the method of hardening surface by inducing rapid self quenching of laser injected area through transfer of surface heat to inside after rapid heating of laser injected area only by high density energy heat source. This surface treatment method does not involve virtually any thermal deformation by heat treatment nor accompanies any other process after surface hardening treatment. In addition, allowing local machining, this method is a surface treatment method suitable for die with complicated shape. In this study, die material cast iron was surface-treated by using high power diode laser with beam profile suitable for heat treatment. Since the shapes of die differ by press die process, specimens were heat-treated separately on plane and corner depending on the applied parts. At this time, corner heat treatment was done with optic head inclined at $10^{\circ}$. As a result, corner heat treatment easily involves concentration of heat input due to limitation of heat transfer route by the shapes compared with plane part, so the treatment accomplished hardening at faster conveying speed than plane heat treatment.