• 제목/요약/키워드: Process Heat Exchanger(PHE)

검색결과 18건 처리시간 0.018초

Flow Distributions in the Channel of Plate Heat Exchanger Applied in Vacuum Evaporating Distiller System

  • Jin, Zhen-Hua;Park, Gi-Tae;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.389-394
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present work, PHE is applied in the fresh water generator system. Fresh water generators or desalinators are installed in ship to convert seawater to fresh water using heat from engines. PHE is an important part of a condensing or evaporating system. Among many of factors which should be concentrated on, the heat transfer and pressure drop is most important parts during sizing and rating the performance of PHE. Flow maldistribution is common but it will significantly reduce the heat exchanger performance. In this paper provide a overview of PHE cover basic of theory and conduct a numerical approach for flow distribution in plate channel. An experimental study on the performance of fresh water generator system which developed by plate heat exchanger will presented in future research. Thus, extensive experiment and analysis is required to study the thermal and fluid flow characteristics of PHE.

  • PDF

소형 공정열교환기 시제품의 고온구조해석 (High-temperature Structural Analysis on the Small Scale PHE Prototype)

  • 송기남;이형연;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.57-64
    • /
    • 2010
  • PHE(Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR(Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high-temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype.

  • PDF

배관 강성을 고려한 소형 공정열교환기 시제품에 대한 탄성 고온구조해석 (Elastic High-temperature Structural Analysis on the Small Scale PHE Prototype Considering the Pipeline Stiffness)

  • 송기남;강지호;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.48-53
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In this study, as a part of the evaluation on the high-temperature structural integrity of the small-scale PHE prototype, we carried out macroscopic high-temperature structural analysis of the small-scale PHE prototype under the gas loop test conditions considering the pipeline stiffness.

소형가스루프 시험조건에서 소형 공정열교환기 시제품의 고온구조해석 (High-Temperature Structural Analysis on the Small-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop)

  • 송기남;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2012
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In order to properly evaluate the high-temperature structural integrity of the small-scale PHE prototype, it is very important to impose a proper constraint condition on its structural analysis model. For this effort, we tried to impose several constraint conditions on the structural analysis model and consequently fixed a proper and effective displacement constraints.

용접물성치를 고려한 소형 공정열교환기 시제품의 고온구조해석 (High-Temperature Structural Analysis on the Small-Scale PHE Prototype using Weld Properties)

  • 송기남;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature gas cooled Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. Previous research on the high-temperature structural analysis of the small-scale PHE prototype had been performed only using parent material properties. In this study, high-temperature structural analysis using weld properties in weld zone was performed and the analysis results compared with the previous research.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

소형 공정열교환기 시제품에 대한 탄소성 고온구조해석 (Elastic/Plastic High-temperature Structural Analysis on the Small Scale PHE Prototype)

  • 송기남;이형연;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2011
  • PHE(Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR(Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established a small-scale gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype made of Hastelloy-X to be tested in the small-scale gas loop. Results from the elastic structural analysis on the PHE prototype were reported in the previous article. In order to investigate the macroscopic structural characteristics and behavior of the PHE prototype under the test condition of the small-scale gas loop far more in detail, elastic-plastic high-temperature structural-analysis of the PHE prototype was carried out in this study.

공정열교환기 소형 시제품에 대한 고온구조해석(III) (High-temperature Structural Analysis of Small-scale Prototype of Process Heat Exchanger (III))

  • 송기남;이형연;김찬수;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제35권2호
    • /
    • pp.191-200
    • /
    • 2011
  • 초고온가스로로부터 생성된 $950^{\circ}C$ 정도의 초고온 열을 이용하여 수소를 경제적이며 또한 대량으로 생산하는 원자력수소생산시스템에서 공정열교환기는 초고온 열과 화학반응 공정을 통해 수소를 생산하기 위한 핵심 기기이다. 한국원자력연구원에서는 초고온가스로에 사용될 기기에 대한 성능시험을 위해 소형가스루프를 구축하고 공정열교환기 시제품을 수정 제작하였다. 본 연구는 공정열교환기 수정 시제품을 소형가스루프에서 시험하기 전에 루프 시험조건하에서 공정열교환기 수정 시제품의 고온 구조건전성을 미리 평가하기 위한 작업의 일환으로 공정열교환기 수정 시제품에 대한 고온 구조해석 모델링, 거시적 열 해석 및 구조 해석을 수행하고 그 결과들을 정리한 것이다. 해석 결과는 공정열교환기 수정 시제품 성능시험 장치 설계에 반영할 것이다.

소형가스루프 시험조건에서 중형 공정열교환기 시제품의 고온구조해석 (High-Temperature Structural Analysis on the Medium-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop)

  • 송기남;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.33-38
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute has established a small-scale gas loop for the performance test on VHTR components and recently has manufactured a medium-scale PHE prototype made of Hastelloy-X. A performance test on the PHE prototype is scheduled in the gas loop. In this study, high-temperature structural analysis modeling, and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints in the previous research were carried out under the gas loop test condition. The results obtained in this study will be compared with performance test results.

헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링(II) (High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II))

  • 송기남;이형연;김찬수;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1455-1462
    • /
    • 2010
  • 초고온가스로에서 생성된 $950^{\circ}C$ 정도의 초고온 열을 이용하여 수소를 경제적이며 또한 대량으로 생산하기 위한 시스템이 원자력수소생산시스템이며, 이 시스템에서 공정열교환기는 초고온 열과 황-요오드 공정을 통해 수소를 생산하는 핵심 기기이다. 한국원자력연구원에서는 초고온가스로에 사용될 기기에 대한 성능시험을 위해 헬륨가스루프를 구축하고 공정열교환기 시제품을 제작하였다. 본 연구는 공정열교환기 시제품을 헬륨가스루프에서 시험하기 전에 미리 공정열교환기 시제품의 고온 구조건전성을 평가하기 위한 작업의 일환으로 공정열교환기 시제품에 대한 고온구조해석 모델링, 열해석 및 열팽창해석 결과들을 정리한 것이다. 해석 결과는 공정열교환기 시제품 성능시험 장치 설계에 반영할 것이다.