• Title/Summary/Keyword: Process FMEA

Search Result 102, Processing Time 0.026 seconds

A Study of FMEA for Selecting Priority Safety Unit;focusing on the cases of steel frame work (중점 안전관리 항목 도출을 위한 FMEA활용 방안;철골 공사 사례를 중심으로)

  • Park, Chan-Jong;Song, Ji-Won;Ryu, Jung-Ho;Kim, Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.502-506
    • /
    • 2006
  • For advanced construction safety, there frequently are repeated accident. Most of them are serious disasters which are continually concerned. But technical method of Safety organizations for construction project is still short, simple and unscientific. We suggest FMEA(Failure Mode and Effect Analysis) process on the safety management. The purpose of study is an establishment of safety system focused on scientific method by selecting priority unit and by figuring importance.

  • PDF

Design for Reliability of Air-Launching Rocket, MirinaeII Using FMEA(Failure Modes and Effects Analysis) (FMEA를 통한 공중발사 로켓, 미리내II의 신뢰성 설계)

  • Kim, Jin-Ho;Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Kim, Kyung-Mee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1193-1200
    • /
    • 2008
  • The procedure of design for reliability which consists of reliability analysis and Failure Modes and Effects Analysis(FMEA) is established and reliability assesment is performed for the nano-satellite air-launching rocket, Mirinae II. By means of using the reliability analysis result, the feasibility to insert the Mirinae II to the target orbit for given mission time under operating environment is assessed. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS), and reliability structure is defined by both Reliability Block Diagram(RBD) and schematics of the system. FMEA is used to determine the risk priority number of components and parts. The target reliability is satisfied by changing the design of components and parts with high-risk, hence the design for reliability to put the satellite in to the target orbit safely has been performed.

Noise Reduction of a Small D/C Motor Using 6 Sigma Process (6 시그마 프로세스를 이용한 소형 직류 모터의 소음 절감)

  • 차원준;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.532-538
    • /
    • 2003
  • This paper studies on the noise reduction for a small automobile DC Motor (a window motor) using the 6 sigma process. The application of 6 sigma process suggested reliable and valuable statistical data for the quality of the DC motor at the production line. In the measurement step in 6 sigma process. the FMEA(failure mode effect analysis) were used for the detection of noise sources. The application of 6 sigma Process gave not only the improving method for the quality of the DC motor but also the confidence of improvement Itself since it was done on the basis of the test results for a number of DC motors at the production line. Consequently the 6 sigma process was proved very effective for the noise reduction at the production line.

A Study on the Safety Assessment of Zinc Plating Process (아연도금공정의 안전성평가)

  • Rhie, Kwang-Won;Park, Moon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.148-154
    • /
    • 2003
  • There are now the plating process that have many hazardous factor cause of the using numerous noxious chemical and bad working environments. The purpose of the study is to make a selection of suitable safety evaluation method that can analyze and righteously find with numerous hazardous factor of the plating process. And another purpose is to systematically adjust the risk of plating process by comprehension of the role of process, equipment, and source material. Therefore, these studies are carried out in the following three investigations of this report. The first research understands the injurious human health and environment by analyzing hazardous material based on the MSDS. To evaluate the safety of process and compartment, the second research is proposed the security secure counterproposal by using the FMEA and the HAZOP. The final research is devoted to systematically analyze the hazard by applying for reasonable guide word and doing the HAZOP for hazardous factor in specific process.

A Six Sigma Project for Reducing the Make pressure problem of Relay (릴레이 복귀전압 신뢰성 향상을 위한 6시그마 프로젝트 사례연구)

  • Kim Hyun Soo;Lee Hwa Ki;Kim Pan Joe
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.87-100
    • /
    • 2005
  • This paper studies on the quality problem for the Reley using the 6 sigma process. The application of 6 sigma process suggested reliable and valuable statistical data for the quality of the Relay at the production line. In the measurement step in 6 sigma process, the FMEA(filure mode effect analysis) were used for the detection of problem source. The application of 6 sigma process gave the improving method for the quality of the Relay. Consequently the 6 sigma process was proved very effective for the quality problem reducing at the production line.

A Study on the Risk Identification Methods for Initial and Mass Production Stage of Military Products Using FMEA (FMEA를 활용한 군수품 초도 생산 및 양산 단계의 위험 식별 방안 연구)

  • Lee, Chang Hee;Yang, Kyung Woo;Park, Du Il;Lee, Il Lang;Kwon, Jun Sig;Choe, Il Hong;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2014
  • Purpose: It can deduce improvement plan that recognizes any risk factors in initial production and mass production by using FMEA and through this process, the appropriate criteria for defence items can be established. Methods: It proposes two methodology - Apply DT/OT data achieved from the beginning mass production stage based on FMECA data of the design stage, to risk management, and risk management plan that reflected line and field faliure data in case of is offered. Results: It proposes the risk management plan through Bayesian method and the risk identification that considered MTTF estimated value in case of initial production process. In case of mass production process, both risk identification by using fault occurrence frequency scores and Byaesian method, In case of the Initial production and mass production, it proposes use both two methods. Conclusion: A more realistic risk identification method can be applied, and by this method the quality improvement effect is expected.

A Study on Safety of Hydrogen Station (수소충전소의 안전성에 관한 연구)

  • Ko, Jae-Wook;Lee, Dae-Hee;Jung, In-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • A safety assessment was performed through the process analysis of hydrogen station. The purpose of this study provides basic information for the standard establishment about hydrogen stations. The processes of hydrogen stations were classified by four steps (process of manufacture, compression, storage, charge). FMEA (Failure Mode and Effect Analysis) method was applied to evaluate safety. Each risk element is following; S (severity), O (occurrence), D (detection). And the priority of order was decided by using RPN (Risk Priority Number) value multiplying three factors. Scenarios were generated based on FMEA results. And consequence analysis was practiced using PHAST program. In the result of C.A, jet fire and explosion were shown as accident types. In case of leakage of feed line in PSA process, concentration of CO gas is considered to prevent CO gas poisoning when the raw material that can product CO gas was used.

  • PDF

A Quantitative Analysis of Fatal Accidents Related to Cranes Using the FMEA Method (FMEA 기법을 활용한 크레인 관련 중대 재해의 정량적 분석에 관한 연구)

  • Kim, Hong-Hyun;Lee, Ghang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.115-122
    • /
    • 2007
  • As buildings become higher, larger, and more complex, safety issues for construction workers working at such environments become more important. We analyzed 83 critical accident cases reported to the KOSHA(Korea Occupational Safety & Health Agency) for construction cranes by types of cranes and by patterns of accidents and causes. There are more number of accidents related to mobile cranes than that related to tower cranes, but the numbers of dead were similar in both cases. The most dominant cause of crane accidents was "fall of materials". We also analyzed the cases of crane accidents using the FMEA(Failure Mode and Effect Analysis) in order to set up a priority for safety management and also to prioritize research and development items relating tower cranes. In the process, we tried to eliminate subjective indexes such as an expert group survey and use objective and quantitative indexes. As a result, it was found that critical crane accidents occurs most during the "lifting and translating" activity.

Identification of Claim Elements for Design Build Projects using FMEA Method (FMEA 기법을 이용한 설계시공일괄방식 주요 클레임 요인 도출)

  • Yoon, Seokmin;Hyun, Changtaek;Han, Sangwon;Cha, Yongwoon
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.26-33
    • /
    • 2015
  • Design-build projects were devised to enhance the design technologies of the domestic construction industry and the efficiency of public works, contributing greatly to the development of construction technologies. However, as various stages of the process, such as formulation of basic plans and design documents, and deliberations proceed, claims, including changes in the requirements of clients, and design changes occur. These claims result in the delay in construction and an increase in construction costs. In this regard, this study attempted to identify main claims that delay construction and increase the costs of design-build projects, prevent claims in the future, and improve the efficiency of project implementation.

A study on the safety assessment of Hydrogen refueling system (수소 충전 시스템의 안전성 평가에 관한 연구)

  • Kim, Tae Hun;Oh, Young Dal;Lee, Man Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.167-173
    • /
    • 2014
  • Hydrogen energy is expanding in range for civil use together with development of pollution-free power sources recently, and it is judged that the use of hydrogen will increase more as a part of carbon dioxide reduction measures according to the Climatic Change Convention. Especially, it is thought that the securement of safety of the used dispenser will be the biggest obstacle in the use of high-pressure hydrogen because the hydrogen station is operated in a high pressure. This study found risks in the process and problems on operation by making use of HAZOP(6 kinds), a qualitative safety evaluation technique, and FMEA(5 kinds), a fault mode effect analysis, for the hydrogen charging system at a hydrogen gas station, derived 6 risk factors from HAZOP and 5 risk factors from FMEA, and prepared measures for it.