• Title/Summary/Keyword: Process Decomposition

Search Result 1,261, Processing Time 0.027 seconds

A Study on Recovery of Aluminum Oxide from Artificial Marble Waste by Pyrolysis (열분해에 의한 폐인조대리석으로부터 산화알루미늄 회수에 관한 연구)

  • Kim, Bok Roen;Kim, Chang Woo;Seo, Yang Gon;Lee, Young Soon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.567-573
    • /
    • 2012
  • Compared with the natural marble, the artificial marble has the advantages of excellent appearance, high degree of finish, even color, fine pressure and wear resistance, bear erosion and weathering, etc. It can be widely used in kitchen countertops, bath vanity tops, table tops, furniture, reception desks, etc. However, large amounts of artificial marble waste such as scraps or dust have been generated from sawing and polishing processes in artificial marble industry. Waste from artificial marble industry is increasing according to demand magnification of luxurious interior material. Artificial marble wastes can be recycled as aluminum oxide used as raw materials in electronic materials, ceramics production, etc., and methyl methacrylate(MMA) which become a raw material of artificial marble by pulverization, pyrolysis and distillation processes. The characteristics of artificial marble wastes was analyzed by using TGA/DSC and element analysis. Crude aluminum oxide was obtained from artificial marble waste by pulverization and thermal decomposition under nitrogen atmosphere. In this work, Box-Behnken design was used to optimize the pyrolysis process. The characteristics of crude aluminum oxide was evaluated by chromaticity analysis, element analysis, and surface area.

Catalytic Carbonization of Biomass and Nonisothermal Combustion Reactivity of Torrefied Biomass (바이오매스 촉매 탄화 및 반탄화 바이오매스의 비등온 연소 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.725-731
    • /
    • 2018
  • The effects of catalysts addition on the carbonization reaction of biomass have been studied in a thermogravimetric analyzer (TGA). The sample biomasses were Bamboo and Pine. The catalysts tested were K, Zn metal compounds. The carbonization reactions were tested in the nonisothermal condition from the room temperature to $850^{\circ}C$ at a heating rate $1{\sim}10^{\circ}C/min$ on the flowing of $N_2$ purge gases. Also, the effects of catalyst on the torrefaction were tested in the temperature condition of 220, 250, $280^{\circ}C$ at 30 min. Combustion characteristic for the torrefied catalyst biomass were studied in the nonisothermal conditions of $200{\sim}850^{\circ}C$. As the results, the initial decomposition temperatures of the volatile matters ($T_i$) and the temperature of maximum reaction rate ($T_{max}$) were decreased with increasing the catalyst amounts in the sample biomass. The char amounts remained after carbonization at $400^{\circ}C$ increased with the catalyst amounts. Therefore catalysts addition can be decreased the energy for carbonization process and improved the heating value of product char. The catalysts reduced the optimum torrefaction conditions from $250^{\circ}C$ to $220^{\circ}C$. The torrefied catalyst biomass have lower activated energy from 46.5~58.7 kJ/mol to 25.1~27.0 kJ/mol in the nonisothermal combustion reaction.

An Analysis of Dynamic Characteristics of RDX Combustion Using Rigorous Modeling (상세 모델링을 통한 RDX 연소 동특성 분석)

  • Kim, Shin-Hyuk;Yeom, Gi-Hwoen;Moon, Il;Chae, Joo-Seung;Kim, Hyeon-Soo;Oh, Min
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.398-405
    • /
    • 2014
  • In the treatment of spent high energetic materials, the issues such as environmental pollution, safety as well as working capacity should be carefully considered and well examined. In this regard, incineration has been recommended as one of the most promising processes for the disposal of such explosives. Due to the fact that high energetic materials encompass various types and their different characteristics, the technology development dealing with various materials is not an easy task. In this study, rigorous modeling and dynamic simulation was carried out to predict dynamic physico-chemical phenomena for research department explosive (RDX). Plug flow reactor was employed to describe the incinerator with 263 elementary reactions and 43 chemical species. Simulation results showed that safe operations can be achieved mainly by controlling the reactor temperature. At 1,200 K, only thermal decomposition (combustion) occurred, whereas increasing temperature to 1,300 K, caused the reaction rates to increase drastically, which led to ignition. The temperature further increased to 3,000 K which was the maximum temperature recorded for the entire process. Case studies for different operating temperatures were also executed and it was concluded that the modeling approach and simulation results will serve as a basis for the effective design and operation of RDX incinerator.

Development of Chitosan Coated Solid Lipid Nano-particles Containing 7-Dehydrocholesterol (7-디하이드로콜레스테롤을 함유한 키토산 코팅 처리 Solid Lipid Nano-particle의 개발에 관한 연구)

  • Lee Geun-Soo;Kim Tae-Hoon;Lee Chun-Il;Pyo Hyeong-Bae;Choe Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.141-146
    • /
    • 2005
  • Unstable cosmetic active ingredients could rapidly break down in chemical and photochemical process. Therefore, it has become a very important issue to encapsulate active ingredient for the stabilization. 7-Dehydrocholesterol (7-DHC), a precursor of vitamin $D_3$, has been shown to increase levels of protein and mRNA for heat shock protein in normal human epidermal keratinocytes. However, topical dermal application of 7-DHC is restricted due to its poor solubility and chemical unstability. In this study, 7-DHC was incorporated into nano-emulsion (NE), solid lipid nano-particle (SLN), and chitosan coated solid lipid nano-particle (CASLN), respectively. In order to prepare NE and SLN dispersion, high-pressure homogenization at temperature above the melting point of lipid was used Hydrogenated lecithin and polysorbate 60 were used as stabilizer for NE and SLN. CASLN was prepared by high speed homogenizing after adding chitosan solution to the SLN dispersion and showed positively charged particle properties. Decomposition rate of 7-DHC in NE, SLN and CASLN was studied as a function of time at different temperature. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were performed to characterize state of lipid modification. It appeared that CASLN is the most effective to stabilize 7-DHC and may be used for a useful topical dermal delivery system.

Synthesis and Characterization of PPC/Organo-Clay Nanohybrid: Influence of Organically Modified Layered Silicates on Thermal and Water Absorption Properties (PPC와 Organo-Clay 나노 조성물의 합성과 실리카층의 수분흡수와 열적특성에 대한 영향)

  • Han, Hak-Soo;Khan, Sher Bahadar;Seo, Jong-Chul;Jang, Eui-Sung;Choi, Joon-Suk;Choi, Seung-Hyuk
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Nanohybrid based on environmentally friendly and biodegradable polymer, poly propylene carbonate (PPC) and cloisite 20B (PPC/C-20B) have been synthesized by solution blending method and their morphology, thermal and water absorption properties have been evaluated. The structure of PPC/C-20B nanohybrid was confirmed by X-ray diffraction (XRD). The thermal property of PPC and PPC/C-20B nanohybrid were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetric (DSC). The experimental results demonstrated that nanohybrid showed the highest thermal stability in TGA and DSC. TGA tests revealed that the thermal decomposition temperature ($T_{d50%}$) of the nanohybrid increased significantly, being $23^{\circ}C$ higher than that of pure PPC while DSC measurements indicated that the introduction of 5 mass% of clay increased the glass transition temperature from 21 to $30^{\circ}C$. Further the water absorption capacity of the PPC was significantly decreased by the incorporation of clay. Water absorption cause degradation of the coating by the moistures and affect the physical and mechanical performance. This result indicates that organic modifiers have effect on thermal and water absorption capacity of PPC and are of importance for the practical process and application of PPC.

Fabrication and Characterization of Lead Oxide (PbO) Film for High Efficiency X-ray Detector (고효율 X선 검출기 적용을 위한 PbO 필름 제작 및 특성 연구)

  • Cho, Sung-Ho;Kang, Sang-Sik;Choi, Chi-Won;Kwun, Chul;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.329-329
    • /
    • 2007
  • Photoconductive poly crystalline lead oxide coated on amorphous thin film transistor (TFT) arrays is the best candidate for direct digital x-ray detector for medical imaging. Thicker films with lessening density often show lower x-ray induced charge generation and collection becomes less efficient. In this work, we present a new methodology used for the high density deposition of PbO. We investigate the structural properties of the films using X-ray diffraction and electron microscopy experiments. The film coatings of approximately $200\;{\mu}m$ thickness were deposited on $2"{\times}2"$ conductive-coated glass substrates for measurements of dark current and x-ray sensitivity. The lead oxide (PbO) films of $200\;{\mu}m$ thickness were deposited on glass substrates using a wet coating process in room temperature. The influence of post-deposition annealing on the characteristics of the lead oxide films was investigated in detail. X-ray diffraction and scanning electron microscopy, and atomic force microscopy have been employed to obtain information on the morphology and crystallization of the films. Also we measured dark current, x-ray sensitivity and linearity for investigation of the electrical characteristics of films. It was found that the annealing conditions strongly affect the electrical properties of the films. The x-ray induced output charges of films annealed in oxygen gas increases dramatically with increasing annealing temperatures up to $500^{\circ}C$ but then drops for higher temperature anneals. Consequently, the more we increase the annealing temperatures, the better density and film quality of the lead oxide. Analysis of this data suggests that incorporation and decomposition reactions of oxygen can be controlled to change the detection properties of the lead oxide film significantly. Post-deposition thermal annealing is also used for densely film. The PbO films that are grown by new methodology exhibit good morphology of high density structure and provide less than $10\;pA/mm^2$ dark currents as they show saturation in gain (at approximate fields of $4\;V/{\mu}m$). The ability to operate at low voltage gives adequate dark currents for most applications and allows voltage electronics designs.

  • PDF

Investigation on Growth Characteristic of ZnO Nanostructure with Various O2 Pressures by Thermal Evaporation Process (열증착법으로 성장된 ZnO 나노구조물의 산소유량 변화에 대한 성장 변화)

  • Kim, Kyoung-Bum;Jang, Yong-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Jo, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.839-843
    • /
    • 2011
  • ZnO nanostructures were developed on a Si (100) substrate from powder mixture of ZnO and 5 mol% Pd (ZP-5) as reactants by ${\times}$ sccm oxygen pressures(x= 0, 10, 20, 40). DTA (differential thermal analysis) result shows the Pd(5 mol%)+ZnO mixtured powder(PZ-5) is easily evaporated than pure ZnO powder. The PZ-5 mixtured powder was characterized by DTA to determine the thermal decomposition which was found to be at $800^{\circ}C$, $1,100^{\circ}C$. Weight loss(%) and ICP (inductively coupled plasma) analysis reveal that Zn vaporization is decreased by increased oxygen pressures from the PZ-5 at $1,100^{\circ}C$ for 30 mins. Needle-like ZnO nanostructures array developed from 10 sccm oxygen pressure, was well aligned vertically on the Si substrate at $1,100^{\circ}C$ for 30 mins. The lengths of the Needle-like ZnO nanostructures is about 2 ${\mu}m$ with diameters of about 65 nm. The developed ZnO nanostructures exhibited growth direction along [001] with defect-free high crystallinity. It is considered that Zn vaporization is responsible for the growth of Needle-like ZnO nanostructures by controlling the oxygen pressures. The photoluminescence spectra of ZnO nanostructures exhibited stronger 376.7 nm NBE (near band-edge emission) peak and 529.3 nm DLE (deep level energy) peak.

Effect of Artificial Zeolite on Fermentation and Emission of Ammonia and Methane during Animal Waste Composting (인공제올라이트 처리가 가축분 퇴비의 발효 및 암모니아, 메탄가스 발생에 비치는 영향)

  • Lee, Deog-Bae;Kim, Jong-Gu;Lee, Kyung-Bo;Lee, Sang-Bok;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.361-368
    • /
    • 2000
  • This study was carried out to investigate the influence of artificial zeolite on the change of temperature, gas emission, water content and chemical properties during the composting process with the mixture of animal feces, broken bark and extruded rice hull. Artificial zeolite was added 0, 0.5, 1, 3 and 5% volume of the raw composting material, and proceeded 1.2m every day with mobile stacking escalator. Temperature was increased, and water content was decreased in the composting pile by addition of artificial zeolite. This caused to accelerate decomposition of organic matter during composting. $NH_3$ was emitted the highest at 6th day after stacking, then decreased gradually. And addition of artificial zeolite caused to decrease greatly in $NH_3$ emission from composting pile. As result of this, content of nitrogen in the compost was increased by addition of artificial zeolite. Emission of $CH_4$ was the highest at early stacking stage, and that was decreased drastically at 8th day. Emission of $CH_4$ was also decreased greatly by addition of artificial zeolite at 5th days after stacking. It may be resulted from adsorption of $CH_4$ into the molecular sieve structure of artificial zeolite and low water content by high temperature fermentation.

  • PDF

Relationship of Initial Density, Biomass and Tuber Productivity of Scirpus planiculmis in the Nakdong River Estuary (낙동강 하구 새섬매자기 초기밀도, 생체량과 괴경량의 관계)

  • Yi, Yong Min;Yeo, Un Sang;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Scirpus planiculmis dominated in Nakdong river estuary is known as food for birds visiting to Nakdong river estuary and plays an important role in material cycle and food web, while repeating growth and production, decomposition process in 1-year interval. Therefore, if it is able to predict effectively biomass or tuber production of Scirpus planiculmis which is food source for estuarine organisms or birds, it can provide very useful information on the Nakdong river estuary management. In this study, regression equation that can predict the tuber production, food for birds, was obtained using initial density of Scirpus planiculmis that can minimize the disturbance of ecosystem and is faster and easier. The correlation analysis results show that density, biomass and tuber production have liner relationship(p<0.001) with 0.6103~0.9950 of correlation coefficients. In addition, the regression equations have high coefficients of determination of 0.3696~0.7145 and it shows that it is able to predict biomass or tuber production while using the estimated regression equation obtained from relationship among the initial density, biomass and tuber production. The results of this study are expected to utilize effectively the management of estuary ecosystem such as management on food source for migratory birds visiting to Nakdong river estuary.

A Study on Development of Eco-friendly Wrap using Biodegradable Resin (생분해성 수지를 이용한 환경친화성 랩 개발에 관한 연구)

  • Lim, Mi-Jin;Sim, Jae-Ho;Choi, Jong-Moon;Kim, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.800-808
    • /
    • 2005
  • The compounding resin for biodegradable wrap was developed, and its manufacturing process and physical properties were studied. For these purposes, following factors were optimized: the types and amounts of raw resin material, anti-oxidants, and lubricants used. In this work, the stable compounding resin used to make biodegradable wrap was based on poly(butylene adipate-co-butylenesuccinate) (PBAS) and poly(butyleneadipate-co-butylene succinate-co-butyleneterephthalate) (PBAST). The improved properties of resin with an additive were investigated by melting flow index (MFI). From these results, the physical properties of compounding resin, based on PBAST, were more than those of PBAS. For PBAS, the Irganox 1010, 1076 and Irgafos TNPP as the first and second anti-oxidants, respectively, were good. For PBAST, the good first and second anti-oxidants, respectively, were Irganox 1076 and Mark PEP 36. The good lubricants for feeding PBAS and PBAST were glycerol monostearate and palmityl alcohol, respectively. The stability and tensile strength experiment of wrap were also investigated by the elution of heavy metals and universal testing machine (UTM), respectively. The decomposition ratio of developed wrap was increased proportional to the reclaiming time. The degradation ratio of compounding resin sample was about 60% after 40 days.