• Title/Summary/Keyword: Process Conditions

검색결과 12,184건 처리시간 0.041초

자유 곡면 금형 연마기 개발 (Development of Polishing Machine for Free Form Surface Die)

  • 박정훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.417-422
    • /
    • 2000
  • In the process of die manufacturing, according to increasing demand of die and molds, the efficient machining of dies and molds has been increased. However, while the cutting process has been automated by the progress of CNC(computer numerical control) and CAD/CAM, the polishing process still depends on the experienced knowledge of an expert. Also, even when workers are skilled in polishing dies. it takes much time to obtain the required roughness and smoothness on the surface of a die. Moreover, many workers gradually avoid doing polishing work because of the poor working conditions caused by dust and noise. Therefore, to improve productivity and to solve the potential shortage of skilled workers, a user-friendly automatic polishing system was developed in this research. The developed polishing system with five degrees of freedom is able to keep the polishing tool normal to the die surface during operation and is able to maintain a pressure constantly by the developed pneumatic system. Also, to evaluate polishing performance of the developend system and find the polishing conditions, the various polishing experiments were carried out.

  • PDF

Swaging 시 P/S 호스의 변형 특성에 대한 유한요소해석 (Finite Element Analysis for the Deformation Characteristics of a P/S Hose in the Swaging Process)

  • 김병탁;김형제;송한종;강창기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.692-697
    • /
    • 2001
  • It is necessary to analyze the mechanical behaviors of the power steering hose, which must play a proper role under severe operating conditions, in order to prepare a preventive measure fur contrary effects expected in unfavorable circumstances. In this paper, the stress and deformation characteristics of the hose components such as rubber, sleeve, nipple and reinforced braids during the swaging process, are analyzed using the finite element method. Contact conditions identical to the manufacturing process are taken into account, and the material properties based on experimental data are used in the analysis. Investigations into the mutual relations between the manufacturing conditions and the hose performances are done with respect to the jaw stroke on the basis of the stress and strain values of the hose components after swaging process.

  • PDF

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF

유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구 (Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

내륜 연삭에 관한 연구 (A Study on Grinding for Inner Race)

  • 김우강;김건희
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.46-49
    • /
    • 2011
  • The grinding is a popular process for studying constant velocity joint and process in automobile industry. In this study, The study gives the data of wheel type and grinding of inner race is developed. As a result I obtained the data of grinding conditions makes good surface roughness get a grinding conditions. The grinding characteristics and conditions of inner race were investigated with respect to grinding feed, cutting depth, grinding time. The results were suddenly increased and the detailed surfaces were extremely obtained. Grinding condition was big more affected by grinding time, grinding speed and grinding depth.

선삭공정의 각도변화가 표면거칠기에 미치는 영향에 관한 기초 연구 (A Basic Study on the Surface Roughness in Turning Process Considering Taper Angle Variation)

  • 김동현;최준영;이춘만
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.16-21
    • /
    • 2011
  • In machining operation, the quality of surface finish is an important factor for many turned products. In this paper, surface quality in turning machining considering angle variation has been investigated. To reach this goal, surface quality turning experiments are carried out according to cutting conditions with angle variation. The variable cutting conditions are cutting speed, feed rate and taper angle of workpiece. The surface roughness was measured and the effects of cutting conditions were analyzed by the method of analysis of variance (ANOVA). From the experimental results and ANOVA, it is found that a better surface roughness can be obtained as decreasing feed rate, increasing cutting speed. Taper angle variation has been more influenced by feed rate and cutting speed.

퍼지이론을 이용한 선삭의 절삭력제어 (Cutting Force Control of Turning Process Using Fuzzy Theory)

  • 노상현;정선환;김교형
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.113-120
    • /
    • 1994
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee cutting force regulation. This paper presents a fuzzy controller which can regulate cutting force in turning process under varying cutting conditions. The fuzzy control rules are extablished from operator experience and expert knowledge about the process dynamics. Regulation which increases productivity and tool life is achieved by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted conventional lathe. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation capability in spite of the variation of cutting conditions.

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권4호
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

Generation of Effective Cutting Conditions for Machining Safety in a Manufacturing Industry

  • Seo, Ji-Han;Park, Byoung-Tae
    • International Journal of Safety
    • /
    • 제5권2호
    • /
    • pp.34-37
    • /
    • 2006
  • As part of an effort to systematize the operation planning for cutting processes, the neural network method has been applied to model the process of selecting cutting conditions and subsequently to arrive at effective and safe cutting conditions through learning during training of the model. New cutting conditions that are more effective and safer for the given circumstance are obtained. The proposed algorithm deletes the old information previously learned, and then makes the network make at improvement by learning. As a result, the new algorithm provides useful cutting conditions for safer manufacturing environments. A variety of simulation cases illustrate the performance of the proposed methodology. The simulation results are provided and discussed.