• Title/Summary/Keyword: Process Conditions

Search Result 12,242, Processing Time 0.035 seconds

A Process for the Control of Cell Size of 6061 Al foams by Multi-step Induction Heating Method (다출력 유도가열 공정을 이용한 다공질 6061 알루미늄 합금의 기공 제어 공정)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.449-456
    • /
    • 2003
  • Multi-step induction heating process was applied to the powder compact melting technique as a new heating process to achieve pinpoint accuracy, faster cycle time, repeatability, non-contact and energy-efficient heat in a minimal amount of time. The objective of this study is the establishment of the input data diagram of multi step induction heating process for automation of the fabrication process of 6061 Al foams with desired density. At first, proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of specimen. By using this coil, foaming experiments were performed to investigate the multi-step induction heating conditions such as capacity, temperature and time conditions of each heating and holding step. On the basis of the obtained multi-step induction heating conditions, relationship between final heating temperature and fraction of porosity was investigated.

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

A Study on Intelligent Generator of Mold Temperature Using Fuzzy Algorithm to Prevent Short Shot (퍼지 알고리듬을 이용한 금형 온도 지적생성 시스템에 관한 연구)

  • 강성남;허용정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.53-57
    • /
    • 2001
  • A short shot is an incomplete molded part caused by insufficient material injection into the mold. Remedial actions to control the process conditions can be taken by injection molding experts based on their knowledge and experiences. However, it is very difficult for non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of optimal process conditions based upon fully logic algorithm is proposed so that trial and error can be minimized and non-experts an well at experts can also find the optimal process conditions.

  • PDF

The Relation between the Process Capability Index and the Quality Assurance Level Considering Various Conditions (다양한 상황을 고려한 공정능력지수와 품질보증수준의 관계)

  • 조문수;임태진
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.130-151
    • /
    • 2002
  • This paper investigates the relation between the Process capability index(PCI) and the quality assurance level under various conditions. The effect of the off-targetness of the process mean, deviation from the nomality, the estimation error, and tile measurement error on the quality assurance level is evaluated. Various distributions such as the Student-t, the chi-square, the gamma, the Weibull, and the log-normal distributions are considered to evaluate the deviation from the nomality. The quality levels under abnormal conditions turn out to be severely different from that under the standard condition. We provide tables and graphs of the quality assurance level on various abnormal conditions. In order for the industry users to use the PCI properly, they should refer to the tables and graphs, especially when they are not certain about the standard assumptions on which the PCI depends.

The Establishment of Work Conditions in Plastic Extrusion Process by using Multiple Linear Regression Analysis (중회귀분석을 이용한 플라스틱 압출공정의 작업조건 설정 방법)

  • 김태호;김석중;강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.35-42
    • /
    • 1995
  • In the plastic extrusion process, product quality is influenced by work condition for temperature of cylinders and dies. The work conditions are various, so it is difficult to standardization of the work conditions. Therefore, the work conditions are depended on the workers of experience and skill. In the plastic extrusion process, it has five control heating points on the cylinder and three control heating points on the die. In addition, there is one control point on the extrusion process. It is extrusion speed. In this case, we don't know how these affect product quality. We structure the multiple linear regression equation with the temperature of cylinders and dies as independent variables and the product weight as dependent variable. We solve this equation using statistic computer package named Juse-Qcas.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

A Study on Moldability Evaluation System in Injection Molding Based on Fuzzy Neural Network (퍼지 신경망을 이용한 성형성 평가 시스템에 관한 연구)

  • 강성남;허용정;조현찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.97-100
    • /
    • 1997
  • In order to predict the moldability of a injection molded part, a simulation of filling is needed. Especially when short shot is predicted by CAE simulation in the filling stage, there are mainly three ways to solve the problem. Modification of gate and runner, replacement of plastic resin, and adjustment of process conditions are the main ways. Among them, adjustment of process conditions is the most economic way in the cost and time since the mold doesn\\`t need t be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, a fuzzy neural network(FNN) based upon injection molding process is proposed to evaluate moldability in filling stage and also to solve the problem in case of short shot. An adequate mold temperature is generated through the fuzzy neural network where fill time and melt temperature are taken into considerations because process conditions affect each other.

  • PDF

A Study on High Contraction Conditions by the CPB Process of the Nylon Fabric (Nylon 박지의 CPB방식에 의한 고수축 조건에 관한 연구)

  • Bin, Soyoung;Kim, Dong Kwon;Baek, Yongjin;Jin, Sungwoo;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.309-317
    • /
    • 2015
  • This study is the high contraction processing conditions set by the method of the CPB process. And the ultimate goal of this study is the high contraction of the CPB processing test method that can solve the problems of the high-contraction fabric processing method of the current jet dyeing machine. Non-coating process(CPB process) developed by the expression of a soft touch, light weight, functional and to develop excellent breathable nylon fabric. The nylon fabrics established the optimum processing conditions through the high contraction of the various test conditions, the CPB system.(The benzyl alcohol was used as the main constrictor.) At this time, the warp and weft contraction of nylon fabric was about 20%. And it established the constrictor concentration, the treatment temperature, time of a variety of tests. Also non-coating process(CPB process) can develop soft touch, lightweight, excellent air permeability. As a result, we developed a high contraction nylon fabric having a uniform surface. Manufactured fabric is used for Wind-proof and Down-proof.

Design of Feed System and Process Conditions for Automobile Lamp Garnish Lens with Injection Molding Analysis (사출성형 해석을 이용한 자동차 램프 가니쉬 렌즈의 유동기구 및 공정조건의 설계)

  • Park, Jong-Cheon;Yu, Man-Jun;Park, Ki-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, we design the feed system and process conditions for a lamp garnish lens of an automobile. For this purpose, four design alternatives are presented and injection molding simulation analyses are performed. The optimal feed system is selected by considering the formability of the product and the cost of mold manufacture. The product formability is assessed by the weld line, warpage, sink mark and the maximum injection pressure, whereas the mold-making cost is estimated by the number of valve gates in the hot runner system. To improve the product formability, process conditions are optimized using an experimental design approach named one-factor-at-a-time. No weld line is generated as a result of the optimization. In addition, it is found the warpage and sink mark are reduced while the maximum injection pressure is increased, compared with those before the optimization.

Machine Learning-based Process Condition Selection Method to Prevent Defects in Korean Traditional Brass Casting (한국 전통 유기 제작에서 결함을 방지하기 위한 기계 학습 기반의 공정 조건 선택 방안)

  • Lee, Seungcheol;Han, Dosuck;Yi, Hyuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In the present study, in order to prevent the misrun defects that occur during traditional brass casting, a method for selecting the proper casting process conditions is proposed. A learning model was developed and demonstrated to be able to learn the presence or absence of defects according to the casting process conditions and to predict the occurrence of defects depending on the certain process given. Appropriate process conditions were determined by applying the proposed method, and the determined conditions were verified through a comparison of different simulation results with additional conditions. With this method, it is possible to determine the casting process conditions that will prevent defects in the desired sand model. This technology is expected to contribute to realization of smart traditional brass farming workshops.