• Title/Summary/Keyword: Process Chamber

Search Result 987, Processing Time 0.029 seconds

Slit Wafer Etching Process for Fine Pitch Probe Unit

  • Han, Myeong-Su;Park, Il-Mong;Han, Seok-Man;Go, Hang-Ju;Kim, Hyo-Jin;Sin, Jae-Cheol;Kim, Seon-Hun;Yun, Hyeon-U;An, Yun-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.277-277
    • /
    • 2011
  • 디스플레이의 기술발전에 의해 대면적 고해상도의 LCD가 제작되어 왔다. 이에 따라 LCD 점등검사를 위한 Probe Unit의 기술 또한 급속도로 발전하고 있다. 고해상도에 따라 TFT LCD pad가 미세피치화 되어가고 있으며, panel의 검사를 위한 Probe 또한 30 um 이하의 초미세피치를 요구하고 있다. 따라서, 초미세 pitch의 LCD panel의 점등검사를 위한 Probe Unit의 개발이 시급하가. 본 연구에서는 30 um 이하의 미세피치의 Probe block을 위한 Slit wafer의 식각 공정 조건을 연구하였다. Si 공정에서 식각율과 식각깊이에 따른 profile angle의 목표를 설정하고, 식각조건에 따라 이 두 값의 변화를 관측하였다. 식각실험으로 Si DRIE 장비를 이용하여, chamber 압력, cycle time, gas flow, Oxygen의 조건에 따라 각각의 단면 및 표면을 SEM 관측을 통해 최적의 식각 조건을 찾고자 하였다. 식각율은 5um/min 이상, profile angle은 $90{\pm}1^{\circ}$의 값을 목표로 하였다. 이 때 최적의 식각조건은 Etching : SF6 400 sccm, 10.4 sec, passivation : C4F8 400 sccm, 4 sec의 조건이었으며, 식각공정의 Coil power는 2,600 W이었다. 이러한 조건의 공정으로 6 inch Si wafer에 공정한 결과 균일한 식각율 및 profile angle 값을 보였으며, oxygen gas를 미량 유입함으로써 식각율이 균일해짐을 알 수 있었다. 결론적으로 최적의 Slit wafer 식각 조건을 확립함으로써 Probe Unit을 위한 Pin 삽입공정 또한 수율 향상이 기대된다.

  • PDF

Papers : Simultaneous Monitoring of Strain and Temperature During and After Cure of Unsymmetric Cross - ply Composite Laminate Using Fiber Optic Sensors (논문 : 비대칭 직교적층 복합재료 적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 모니터링)

  • Gang,Hyeon-Gyu;Gang,Dong-Hun;Hong,Chang-Seon;Kim,Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, we present the simulation monitoring of strain and temperature during and after the cure of unsymmetric composite laminate using fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors are used to measure those measurands. The characteristic matrix of the sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilised as a lighr source. Two FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate in different directions and different locations. We perform a real time monitoring of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in a thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

Quality Characteristics of Semi-dry Noodles with different Water Contents (수분함량에 따른 반건조 우리밀 국수의 품질 특성)

  • Park, Bock-Hee;Park, Yang-Kyun;Jo, Kwang-Ho;Jeon, Eun-Raye;Koh, Kyeong-Mi;Choi, Yong-Beom
    • Journal of the Korean Society of Food Culture
    • /
    • v.32 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • This study evaluated the quality characteristics of semi-dried noodles prepared with different water contents (wet noodles; 32, 24, 22, 20%, dry noodles; 12%). The drying process was carried out in a drying chamber at $13{\sim}18^{\circ}C$ temperature and 75~95% humidity. The proximate composition of Korean wheat flour was as follows: water $22.1{\pm}3.64%$, protein $8.6{\pm}0.13%$, fat $1.3{\pm}0.10%$, ash $0.7{\pm}0.02%$, carbohydrates $67.3{\pm}0.10%$. As water contents decreased, both L and b values significantly decreased before cooking of noodles, whereas L, a, and b values were not significantly different after cooking of noodles. Weight, water absorption, and volume of cooked noodles significantly increased as water content decreased, whereas turbidity of soup was not significantly different. Cutting hardness before cooking of noodles significantly increased as water content decreased. Sections of noodles after cooking by SEM (scanning electron microscopy) showed roughness and fewer round starch particles as water content decreased. For overall preferences according to the sensory evaluation, noodles prepared with different water contents were not significantly different. According to the results, semidried noodles have development potential to complement the disadvantages of both wet noodles and dry noodles.

Abatement of CF4 Using RF Plasma with Annular Shape Electrodes Operating at Low Pressure (환상형상 전극구조를 갖는 저압 RF plasma를 이용한 CF4 제거)

  • Lee, Jae-Ok;Hur, Min;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon;Lee, Sang-Yun;Noh, Myung-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.690-696
    • /
    • 2010
  • Abatement of perfluorocompounds (PFCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. In order to meet this circumstance, we have developed a radio frequency (RF) driven plasma reactor with multiple annular shaped electrodes, characterized by an easy installment between a processing chamber and a vacuum pump. Abatement experiment has been performed with respect to $CF_4$, a representative PFCs widely used in the plasma etching process, by varying the power, $CF_4$ and $O_2$ flow rates, $CF_4$ concentration, and pressure. The influence of these variables on the $CF_4$ abatement was analyzed and discussed in terms of the destruction & removal efficiency (DRE), measured with a Fourier transform infrared (FTIR) spectrometer. The results revealed that DRE was enhanced with the increase in the discharge power and pressure, but dropped with the $CF_4$ flow rate and concentration. The addition of small quantity of $O_2$ lead to the improvement of DRE, which, however, leveled off and then decreased with $O_2$ flow rate.

Effects of Pre-Aging Treatment on the Corrosion Resistance of Low Temperature Plasma Nitrocarburized AISI 630 Martensitic Precipitation Hardening Stainless Steel (저온 플라즈마 침질탄화처리된 마르텐사이트계 석출경화형 스테인리스강의 내식성에 미치는 시효 전처리의 영향)

  • Lee, Insup;Lee, Chun-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.43-52
    • /
    • 2020
  • Various aging treatments were conducted on AISI 630 martensitic precipitation hardening stainless steel in order to optimize aging condition. Aging treatment was carried out in the vacuum chamber of Ar gas with changing aging temperature from 380℃ to 430℃ and aging time from 2h to 8h at 400℃. After obtaining the optimized aging condition, several nitrocarburizing treatments were done without and with the aging treatment. Nitrocarburizing was performed on the samples with a gas mixture of H2, N2 and CH4 for 15 h at vacuum pressure of 4.0 Torr and discharge voltage of 400V. The corrosion resistance was improved noticeably by combined process of aging and nitrocarburizing treatment, which is attributed to higher chromium and nitrogen content in the passive layer, as confirmed by XPS analysis. The optimized condition is finalized as, 4h aging at 400℃ and then subsequent nitrocarburizing at 400℃ with 25% nitrogen and 4% methane gas for 15h at vacuum pressure of 4.0 Torr and discharge voltage of 400V, resulting in the surface hardness of around 1300 HV0.05 and α'N layer thickness of around 11 ㎛ respectively.

The Numerical Analysis by the Change on the Length-Height Ratio of 2D Cavity in Supersonic Combustor (수치해석을 이용한 초음속 연소기 내의 2차원 Cavity의 종횡비 변화에 대한 혼합특성 비교연구)

  • Seo, Hyung-Seok;Kim, Ki-Su;Jeon, Young-Jin;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.81-86
    • /
    • 2007
  • The air velocity flowing in inner combustion chamber of Scramjet is supersonic and the time of its stay is very short as a few milliseconds. Within this short time, fuel injection, air-fuel mixing, and combustion process should be accomplished. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. 8 different sized cavities of length-height ratio were used in order to recognize the effect about cavity size. Also, the case without cavity was analyzed to find the effect of cavity. Used code compared with the result of experiment under identical conditions and it was verified. Through this comparison and verification, mixing enhancement by cavity could be confirmed.

  • PDF

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

Vitrification of Simulated Combustible Dry Active Wastes in a Pilot Facility

  • Yang, Kyung-Hwa;Park, Seung-Chul;Lee, Kyung-Ho;Hwang, Tae-Won;Maeng, Sung-Jun;Shin, Sang-Woon
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.355-364
    • /
    • 2001
  • In order to evaluate and finally optimize the vitrification condition for combustible dry active waste (DAW), dust and gas generation characteristics were investigated for PE, cellulose, and mixed waste Tests were conducted by varying the operation variables such as melter configuration, excess oxygen amount, and waste feeding rate. Results showed that dust generation characteristics were affected by the operation parameters and the melter's configuration is the dominant one. For all tested DAWs, dust generation was reduced by increasing the waste feeding rate and the excessive oxygen amount in the melter. Among waste types, dust amount was decreased by the order of mixed wastes, PE, and cellulose. Other parameters such as temperature variation and operation time have also affected the dust generation. The optimum condition for the DAW vitrification was determined as the melter's configuration equipped for minimizing the waste dispersion with 20 kg/h of waste feeding rate and 100% of excessive oxygen supply. CO gas concentration in the off-gas was immediately influenced by the combustion state in the melter, but showed similar trend as the dust generation. For the NOx production during the vitrification process, thermal NOx, which is generated from the Post Combustion Chamber (PCC), rather than fuel NOx was assumed to be dominant. The gas cleaning of efficiencies of the PCC, wet scrubber, and Selective Catalytic Reduction system (SCR) were found to be high enough to keep the concentration of pollutants (CO, NOx, SOx, HCI) in the stack below their relevant emission limits.

  • PDF

Investigation of Chemotactic Activities in Differentiated HL-60 Cells by a Time-lapse Videomicroscopic Assay

  • Jung, Yun-Jae;Woo, So-Youn;Ryu, Kyung-Ha;Jang, Myoung-Ho;Miyasaka, Masayuki;Seoh, Ju-Young
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.76-85
    • /
    • 2006
  • Background: Chemotaxis is one of the cardinal functions of leukocytes, which enables them to be recruited efficiently to the right place at the right time. Analyzing chemotactic activities is important not only for the study on leukocyte migration but also for many other applications including development of new drugs interfering with the chemotactic process. However, there are many technical limitations in the conventional in vitro chemotaxis assays. Here we applied a new optical assay to investigate chemotactic activities induced in differentiated HL-60 cells. Methods: HL-60 cells were stimulated with 0.8% dimethylformamide (DMF) for 4 days. The cells were analyzed for morphology, flow cytometry as well as chemotactic activities by a time-lapse videomicroscopic assay using a chemotactic microchamber bearing a fibronectin-coated cover slip and an etched silicon chip. Results: Videomicroscopic observation of the real cellular motions in a stable concentration gradient of chemokines demonstrated that HL-60 cells showed chemotaxis to inflammatory chemokines (CCL3, CCL5 and CXCL8) and also a homeostatic chemokine (CXCL12) after DFM-induced differentiation to granulocytic cells. The cells moved randomly at a speed of $6.99{\pm}1.24{\mu}m/min$ (n=100) in the absence of chemokine. Chemokine stimulation induced directional migration of differentiated HL-60 cells, while they still wandered very much and significantly increased the moving speeds. Conclusion: The locomotive patterns of DMF-stimulated HL-60 cells can be analyzed in detail throughout the course of chemotaxis by the use of a time-lapse videomicroscopic assay. DMF-stimulated HL-60 cells may provide a convenient in vitro model for chemotactic studies of neutrophils.

Influence of Freezing Process on the Change of Ice Crystal Size and Freeze-Drying Rate in a Model System (모델 시스템에서 동결속도에 따른 얼음 결정체의 크기 및 동결건조속도의 변화)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.164-175
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on ice crystal size and freeze-drying rate. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80$\times$20mm) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom and measured their pore sizes. Also freeze-drying rate(primary drying) is estimated by measuring the temperature of sample and pressure of vacuum chamber. During freeze-drying, profiles of pressure and temperature were shown constant tendency regardless of freezing temperature and we could expect the end-point of freeze drying by considering pressure and temperature together. In temperature profiles, the point which temperature increased significantly was observed during freeze-drying. There is no relationship between freeze temperature and drying rate of primary drying in our model system. As freezing temperature increased, ice crystal size(X*) which correspond to 63.2% of cumulative frequency was increased and at the same freezing temperature ice crystal size(X*) was decreased with distance from the bottom of the sample. Freezing conditions have a strong influence on the quality of the final freeze-dried products in freeze-drying system.

  • PDF