• Title/Summary/Keyword: Process Analysis

Search Result 34,756, Processing Time 0.057 seconds

A Simulation Study for Analyzing a LED Assembly Process (LED 공정분석을 위한 시뮬레이션 연구)

  • Yoon, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.924-929
    • /
    • 2007
  • This paper introduces a simulation model regarding the process analysis of a LED assembly process. The objective of the simulation model is to evaluate the performance of various design aspects of process alternatives. To develop the simulation model, a time study is performed for each process. Next, by using ARENA, a simulation model is conducted based on the process analysis and the line balancing methodology. We found out several problems for the assembly process, and then suggest several alternatives to improve the system.

  • PDF

FEM Analysis for the Prediction of Void Closure On the Open Die Forging Process (자유단조공정에서 기공폐쇄 예측을 위한 유한요소해석)

  • Min, K.Y.;Lim, S.J.;Choi, H.J.;Choi, S.;Park, Y.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.71-74
    • /
    • 2008
  • In order to resolve the problems which appear after the clean large ingot production process, the impurities which are involved in the steel smelting process should be removed by developing cleaner materials. Through the rationalization of cogging process that is the first forging process of large ingot the quality is to be improved. For the sake of the optimization of an open die forging process and the improvement of the subject matter frequency ratio, a hazard precise die forging process must be developed and a Near Net Shape Forming accomplished. As a result, energy can be reduced by minimizing an after control process. In order to produce large axes and other forming parts, processing techniques are to be developed. In this context, this paper is a study about a reduction ratio, dies width ratio and rotary angles, the amount of overlap, and intends to analysis cogging processes, utilizing Deform-3D cogging module

  • PDF

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.

Design and Analysis of Metrics for Enhancing Productivity of Datawarehouse (데이터웨어하우스의 개발생산성 향상을 위한 측정지표의 설계 및 분석)

  • Park, Jong-Mo;Cho, Kyung-San
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.151-160
    • /
    • 2007
  • A datawarehouse which extracts and saves the massive analysis data is used for marketing and decision support of business. However, the datawarehouse has the problem of increasing the process time and cost as well as has a high risk of process errors because it integrates vast amount of data from distributed environments. Thus, we propose a metrics for measurement in the area of productivity, process quality and data quality. Also through the evaluation using the proposed metrics, we show that our proposal provides productivity enhancement and process improvement.

  • PDF

Kinematic Modeling and Analysis of Silicon Wafer Grinding Process (실리콘 웨이퍼 연삭 가공의 기구학적 모델링과 해석)

  • 김상철;이상직;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.42-45
    • /
    • 2002
  • General wheel mark in mono-crystalline silicon wafer finding is able to be expected because it depends on radius ratio and angular velocity ratio of wafer and wheel. The pattern is predominantly determined by the contour of abrasive grits resulting from a relative motion. Although such a wheel mark is made uniform pattern if the process parameters are fixed, sub-surface defect is expected to be distributed non-uniformly because of characteristic of mono-crystalline silicon wafer that has diamond cubic crystal. Consequently it is considered that this phenomenon affects the following process. This paper focused on kinematic analysis of wafer grinding process and simulation program was developed to verify the effect of process variables on wheel mark. And finally, we were able to predict sub-surface defect distribution that considered characteristic of mono-crystalline silicon wafer

  • PDF

Numerical Study on Analysis and Design of Tube Hydroforming Process by the FEM (유한요소법에 의한 관재 하이드로포밍 공정 해석 및 설계를 위한 수치적 연구)

  • Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.302-311
    • /
    • 2002
  • A generalized numerical approach based on the finite element method to analysis and design of hydroforming process is proposed in this paper. The special attention is focused on comparison of an implicit and an explicit finite element method widely used for hydroforming simulation. Furthermore, in order to meet the increasing real needs for prediction of forming limit, a ductile fracture criterion combined with finite element method is introduced and then applied to hydroforming process of an automobile lower m Consequently, the numerical analysis and design for hydroforming process presented here will facilitate the development and application of the tube hydrofoniung process to a new level.

The Influence of the Number of Drawbead on Blank Forming Analysis (블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구)

  • 정동원;이상제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

Stability Analysis of Linear Uncertain Differential Equations

  • Chen, Xiaowei;Gao, Jinwu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.2-8
    • /
    • 2013
  • Uncertainty theory is a branch of mathematics based on normolity, duality, subadditivity and product axioms. Uncertain process is a sequence of uncertain variables indexed by time. Canonical Liu process is an uncertain process with stationary and independent increments. And the increments follow normal uncertainty distributions. Uncertain differential equation is a type of differential equation driven by the canonical Liu process. Stability analysis on uncertain differential equation is to investigate the qualitative properties, which is significant both in theory and application for uncertain differential equations. This paper aims to study stability properties of linear uncertain differential equations. First, the stability concepts are introduced. And then, several sufficient and necessary conditions of stability for linear uncertain differential equations are proposed. Besides, some examples are discussed.

Finite element analysis for forging of nonaxisymmetric cam bolt (비축대칭 캠 볼트 단조의 유한요소 해석)

  • Cho, Hae-Yong;Kim, Wan-Jong;Lee, Seok-Jin;Park, Nam-Ki;Lee, Seung-Hun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1570-1575
    • /
    • 2007
  • The cold-forging process analysed in this paper deals with the cam bolt of a nonaxisymmetric shape which mainly is used as a part in the steering system of a vehicle for the purpose of adjusting shock absorb. So both strength and endurance are very important for the cam bolt. In this study, cam bolt forging process is composed of four stage processes. For three forging stages, shape of workpiece will be eccentrical. And then bolt head and washer of eccentrical shape is created in last stage. 3D finite element analysis repeatedly has been performed with changing dimension of die to obtain adequate former multi forging process and die shape. Simulation results reviewed have influence on deciding design of die and forging process. As a result, Simulation results have provided a direction to improve the process.

  • PDF

Finite Element Analysis for the Body-making Process of Steel D&I Can (Steel D&I Can 몸체성형을 위한 FEM 해석)

  • Jung, S.W.;Jung, C.K.;Nam, J.B.;Jin, Y.S.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.459-464
    • /
    • 2001
  • The main object of this study is to develop a reliable FEM simulation technique for the analysis of Steel D&I Can bodymaking process using ABAQUS software. The body making process includes drawing, redrawing, 3 step ironing, doming. The newly developed FEM code in this research is based on the previous research achievement of POSCO for the drawing, redrawing and ironing process. The analysis is performed using two dimensional axisymmetric elements to analyze the punch force, the height of can, the distribution of residual stress and strain. The effect of blank thickness, gap of ironing die is also analyzed.

  • PDF