• Title/Summary/Keyword: Process Algebra

Search Result 144, Processing Time 0.027 seconds

SPARQL Query Processing System over Scalable Triple Data using SparkSQL Framework (SparQLing : SparkSQL 기반 대용량 트리플 데이터를 위한 SPARQL 질의 시스템 구축)

  • Jeon, MyungJoong;Hong, JinYoung;Park, YoungTack
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.450-459
    • /
    • 2016
  • Every year, RDFS data tends further toward scalability; hence, the manner of SPARQL processing needs to be changed for fast query. The query processing method of SPARQL has been studied using a scalable distributed processing framework. Current studies indicate that the query engine based on the scalable distributed processing framework i.e., Hadoop(MapReduce) is not suitable for real-time processing because of the repetitive tasks; in addition, it is difficult to construct a query engine based on an In-memory Distributed Query engine, because distributed structure on the low-level is required to be considered. In this paper, we proposed a method to construct a query engine for improving the speed of the query process with the mass triple data. The query engine processes the query of SPARQL using the SparkSQL, which is an In-memory based, distributed query processing framework. SparkSQL is a high-level distributed query engine that facilitates existing SQL statement. In order to process the SPARQL query, after generating the Algebra Tree using Jena, the Algebra Tree is required to be translated to Spark Algebra Tree for application in the Spark system, and construction of the system that generated the SparkSQL query. Furthermore, we proposed the design of triple property table based on DataFrame for more efficient query processing in the Spark system. Finally, we verified the validity through comparative evaluation with the query engine, which is the existing distributed processing framework.

A Method Using Linear Matrix Algebra for Determination of Engine Motion in Automobile (자동차 엔진의 운동변위 결정을 위한 선형행렬연산법)

  • Ko, B.G.;Lee, W.I.;Park, G.J.;Ha, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A method using the linear matrix algebra is developed in order to determine unknown external forces in linear structural analyses. The method defines a matrix which represents the linearity of the vibrational analysis for a structural system. The unknown external forces are determined by the operations of the matrix. The method is applied to find an engine motion in an automobile system. For a simulation process, an exhaust system is modeled and analyzed by the finite element method. The validity of the simulation is verified by comparing with the experimental results the free vibration. Also, an experiment on the forced vibration is performed to determine the damping ratio of the exhaust sysetm. Estimated model parameters(natural frequency, mode shape) are in accord with the experimental results. Because the method merely repeats the transpose and inverse operations of a matrix, the solution is extremely easy and simple. Moreover, it is more accurate than the existing methods in that there is no artificial assumptions in the calculation processes. Therefore, the method is found to be reliable for the analysis of the exhaust system considering the characteristics of vibrations. Although the suggested method is tested by only the exhaust system here, it can be applied to general structures.

  • PDF

Equivalence Checking for Statechart Specification (Statechart 명세의 등가 관계 검사)

  • Park, Myung-Hwan;Bang, Ki-Seok;Choi, Jin-Young;Lee, Jeong-A;Han, Sang-Yoong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.6
    • /
    • pp.608-619
    • /
    • 2000
  • In this paper, we give a formal semantics for Statechart via a translation into Algebra of Communicating Shared Hesources(ACSR). Statechart is a very rich graphical specification language, which is suitable to specify complicated reactive systems. However, the incorporation of graph into specification and rich syntax makes Statechart semantics very complicated and ambiguous. Thus, it is very difficult to verify the correctness of Statechart specifications. Also, we propose the formal verification method for Statechart specifications by showing equivalence relation between two Statechart specifications. This makes it possible to combine the advantages of a graphical language with the rigor of process algebra.

  • PDF

Re-Interpreting the Descartes's Perspectives on the Connection of Algebra and Geometry (대수와 기하의 연결에 관한 Descartes의 관점 재조명 연구)

  • Ban, Eun Seob;Shin, Jaehong;Lew, Hee Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.4
    • /
    • pp.715-730
    • /
    • 2016
  • The purpose of this study is to analyze Descartes's point of view on the mathematical connection of algebra and geometry which help comprehend the traditional frame with a new perspective in order to access to unsolved problems and provide useful pedagogical implications in school mathematics. To achieve the goal, researchers have historically reviewed the fundamental principle and development method's feature of analytic geometry, which stands on the basis of mathematical connection between algebra and geometry. In addition we have considered the significance of geometric solving of equations in terms of analytic geometry by analyzing related preceding researches and modern trends of mathematics education curriculum. These efforts could allow us to have discussed on some opportunities to get insight about mathematical connection of algebra and geometry via geometric approaches for solving equations using the intersection of curves represented on coordinates plane. Furthermore, we could finally provide the method and its pedagogical implications for interpreting geometric approaches to cubic equations utilizing intersection of conic sections in the process of inquiring, solving and reflecting stages.

Development of a Web-based System for Raster Data Analysis Using Map Algebra (연구는 래스터 데이터의 지도대수 분석을 위한 GRASS 기반의 웹 시스템 개발)

  • Lee, In-Ji;Lee, Yang-Won;Suh, Yong-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.131-139
    • /
    • 2010
  • Recent spread of GIS and the increasing demand of spatial data have brought about the development of web GIS. In addition to sharing and mapping spatial data, web GIS is also required to provide spatial analytic functions on the web. The FOSS(free and open source software) can play an important role in developing such a system for web GIS. In this paper, we proposed a web-based system for raster data analysis using map algebra. We employed GRASS as an open source software and implemented the GRASS functionalities on the web using java methods for invocation of server-side commands. Map algebra and AHP were combined for the raster data analysis in our system. For a feasibility test, the landslide susceptibility in South Korea was calculated using rainfall, elevation, slope angle, slope aspect, and soil layers. It is anticipated that our system will be extensible to other web GIS for raster data analysis with GRASS.

Translation of Statechart Specification to Process Algebra (Statechart 명세의 프로세스 알제브라로의 변환)

  • 박명환;김영미;김진현;강인혜;최진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.599-601
    • /
    • 1999
  • 본 논문에서는 정형명세 언어인 Statechart의 의미론을 프로세스 알제브라로 설명하는 방법을 제시한다. 이렇게 함으로써 두 개의 Statechart 명세간의 bisimulation을 정의할 수 있게 된다.

  • PDF

ACCELERATION OF MACHINE LEARNING ALGORITHMS BY TCHEBYCHEV ITERATION TECHNIQUE

  • LEVIN, MIKHAIL P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.15-28
    • /
    • 2018
  • Recently Machine Learning algorithms are widely used to process Big Data in various applications and a lot of these applications are executed in run time. Therefore the speed of Machine Learning algorithms is a critical issue in these applications. However the most of modern iteration Machine Learning algorithms use a successive iteration technique well-known in Numerical Linear Algebra. But this technique has a very low convergence, needs a lot of iterations to get solution of considering problems and therefore a lot of time for processing even on modern multi-core computers and clusters. Tchebychev iteration technique is well-known in Numerical Linear Algebra as an attractive candidate to decrease the number of iterations in Machine Learning iteration algorithms and also to decrease the running time of these algorithms those is very important especially in run time applications. In this paper we consider the usage of Tchebychev iterations for acceleration of well-known K-Means and SVM (Support Vector Machine) clustering algorithms in Machine Leaning. Some examples of usage of our approach on modern multi-core computers under Apache Spark framework will be considered and discussed.

a linear system approach

  • 이태억
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.118-118
    • /
    • 1993
  • We consider a discrete event dynamic system called periodic job shop, where an identical mixture of items called minimal part set(MPS) is repetitively produced in the same processing order and the primary performance measure is the cycle time. The precedence relationships among events(starts of operations) are represented by a directed graph with rocurront otructure. When each operation starts as soon as all its preceding operations complete(called earliest starting), the occurrences of events are modeled in a linear system using a special algebra called minimax algebra. By investigating the eigenvalues and the eigenvectors, we develop conditions on the directed graph for which a stable steady state or a finite eigenvector exists. We demonstrate that each finite eigenvector, characterized as a finite linear combination of a class of eigenvalue, is the minimum among all the feasible schedules and an identical schedule pattern repeats every MPS. We develop an efficient algorithm to find a schedule among such schedules that minimizes a secondary performance measure related to work-in-process inventory. As a by-product of the linear system approach, we also propose a way of characterizing stable steady states of a class of discrete event dynamic systems.

  • PDF

Comparison of CONWIP with Kanban in a Production Line with Constant Processing Times (상수 공정시간을 갖는 라인 생산 시스템에서 CONWIP과 간반의 성능 비교)

  • Lee, Ho-Chang;Seo, Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.2
    • /
    • pp.51-65
    • /
    • 2011
  • We compared a CONWIP(constant work-in-process) system with a kanban system in a production line with constant processing times. Based on the observation that a WIP-controlled line production system such as CONWIP and kanban is equivalent to a m-node tandem queue with finite buffer, we applied a max-plus algebra based solution method for the tandem queue to evaluate the performance of two systems. Numerical examples with 6 workstations were used to demonstrate the proposed analysis. The numerical results support the previous studies that CONWIP outperforms kanban in terms of expected waiting time and WIP. Unlike the kanban case, sequencing workstations in a CONWIP does not affect the performance of the system.

Determining the Optimal Buffer Sizes in Poisson Driven 3-node Tandem Queues using (Max, +)-algebra ((Max, +)-대수를 이용한 3-노드 유한 버퍼 일렬대기행렬 망에서 최적 버퍼 크기 결정)

  • Seo, Dong-Won;Hwang, Seung-June
    • Korean Management Science Review
    • /
    • v.24 no.1
    • /
    • pp.25-34
    • /
    • 2007
  • In this study, we consider stationary waiting times in finite-buffer 3-node single-server queues in series with a Poisson arrival process and with either constant or non-overlapping service times. We assume that each node has a finite buffer except for the first node. The explicit expressions of waiting times in all areas of the stochastic system were driven as functions of finite buffer capacities. These explicit forms show that a system sojourn time does not depend on the finite buffer sizes, and also allow one to compute and compare characteristics of stationary waiting times at all areas under two blocking rules communication and manufacturing blocking. The goal of this study is to apply these results to an optimization problem which determines the smallest buffer capacities satisfying predetermined probabilistic constraints on stationary waiting times at all nodes. Numerical examples are also provided.