• Title/Summary/Keyword: Problem Space Based Search

Search Result 178, Processing Time 0.021 seconds

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.

A Study on Modeling of Search Space with GA Sampling

  • Banno, Yoshifumi;Ohsaki, Miho;Yoshikawa, Tomohiro;Shinogi, Tsuyoshi;Tsuruoka, Shinji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.86-89
    • /
    • 2003
  • To model a numerical problem space under the limitation of available data, we need to extract sparse but key points from the space and to efficiently approximate the space with them. This study proposes a sampling method based on the search process of genetic algorithm and a space modeling method based on least-squares approximation using the summation of Gaussian functions. We conducted simulations to evaluate them for several kinds of problem spaces: DeJong's, Schaffer's, and our original one. We then compared the performance between our sampling method and sampling at regular intervals and that between our modeling method and modeling using a polynomial. The results showed that the error between a problem space and its model was the smallest for the combination of our sampling and modeling methods for many problem spaces when the number of samples was considerably small.

  • PDF

Problem space based search algorithm for manufacturing process with rework probabilities affecting product quality and tardiness (Rework 확률이 제품의 품질과 납기준수에 영향을 주는 공정을 위한 문제공간기반 탐색 알고리즘)

  • Kang, Yong-Ha;Lee, Young-Sup;Shin, Hyun-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1702-1710
    • /
    • 2009
  • In this paper, we propose a problem space based search(PSBS) algorithm to solve parallel machine scheduling problem considering rework probabilities. For each pair of a machine and a job type, rework probability of each job on a machine can be known through historical data acquisition. Neighborhoods are generated by perturbing four problem data vectors (processing times, due dates, setup times, and rework probabilities) and evaluated through the efficient dispatching heuristic (EDDR). The proposed algorithm is measured by maximum lateness and the number of reworked jobs. We show that the PSBS algorithm is considerably improved from the result obtained by EDDR.

A Study on the Real - time Search Algorithm based on Dynamic Time Control (동적 시간제어에 기반한 실시간 탐색 알고리즘에 관한 연구)

  • Ahn, Jong-Il;Chung, Tae-Choong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2470-2476
    • /
    • 1997
  • We propose a new real-time search algorithm and provide experimental evaluation and comparison of the new algorithm with mini-min lookahead algorithm. Many other real-time heuristic-search approached often divide the problem space to several sub-problems. In this paper, the proposed algorithm guarantees not only the sub-problem deadline but also total deadline. Several heuristic real-time search algorithms such as $RTA^{\ast}$, SARTS and DYNORA have been proposed. The performance of such algorithms depend on the quality of their heuristic functions, because such algorithms estimate the search time based on the heuristic function. In real-world problem, however, we often fail to get an effective heuristic function beforehand. Therefore, we propose a new real-time algorithm that determines the sub-problem deadline based on the status of search space during sub-problem search process. That uses the cut-off method that is a dynamic stopping-criterion-strategy to search the sub-problem.

  • PDF

A Recognition Method of HANGEUL Pattern Using a State Space Search (상태공간탐색을 이용한 한글패턴 인식방법)

  • 김상진;이병래;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.267-277
    • /
    • 1990
  • In this paper, a method of separation and recognition of phonemes from a composite Korean character pattern through a state space search strategy which is a problem solving method in artificial intelligence is proposed. To correlate the separating of phonemes with their recognizing, the problem is represented into the state space, on which a search strategy is performed. For the minimization of search area, the structural information based on the composition rules of Korean characters and the positional information of phonemes in the basic forms are used. And the effectiveness of the approach is shown by a computer simulation.

  • PDF

Species Adaptation Evolutionary Algorithm for Solving the Optimization Problems

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.233-238
    • /
    • 2003
  • Living creatures maintain their variety through speciation, which helps them to have more fitness for an environment. So evolutionary algorithm based on biological evolution must maintain variety in order to adapt to its environment. In this paper, we utilize the concept of speciation. Each individual of population creates their offsprings using mutation, and next generation consists of them. Each individual explores search space determined by mutation. Useful search space is extended by differentiation, then population explorers whole search space very effectively. If evolvable hardware evolves through mutation, it is useful way to explorer search space because of less varying inner structure. We verify the effectiveness of the proposed method by applying it to two optimization problems.

Dolphin Echolocation Optimization: Continuous search space

  • Kaveh, A.;Farhoudi, N.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Nature has provided inspiration for most of the man-made technologies. Scientists believe that dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization method based on dolphin's approach for hunting food and exploration of environment. DEO has already been developed for discrete optimization search space and here it is extended to continuous search space. DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum results and leads to alternative optimality curves suitable for the problem. This algorithm has a few parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the present work, the efficiency of this approach is demonstrated using standard benchmark problems.

Real-time Graph Search for Space Exploration (공간 탐사를 위한 실시간 그래프 탐색)

  • Choi, Eun-Mi;Kim, In-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.153-167
    • /
    • 2005
  • In this paper, we consider the problem of exploring unknown environments with a mobile robot or an autonomous character agent. Traditionally, research efforts to address the space exploration problem havefocused on the graph-based space representations and the graph search algorithms. Recently EXPLORE, one of the most efficient search algorithms, has been discovered. It traverses at most min$min(mn, d^2+m)$ edges where d is the deficiency of a edges and n is the number of edges and n is the number of vertices. In this paper, we propose DFS-RTA* and DFS-PHA*, two real-time graph search algorithms for directing an autonomous agent to explore in an unknown space. These algorithms are all built upon the simple depth-first search (DFS) like EXPLORE. However, they adopt different real-time shortest path-finding methods for fast backtracking to the latest node, RTA* and PHA*, respectively. Through some experiments using Unreal Tournament, a 3D online game environment, and KGBot, an intelligent character agent, we analyze completeness and efficiency of two algorithms.

  • PDF

A Tensor Space Model based Semantic Search Technique (텐서공간모델 기반 시멘틱 검색 기법)

  • Hong, Kee-Joo;Kim, Han-Joon;Chang, Jae-Young;Chun, Jong-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.4
    • /
    • pp.1-14
    • /
    • 2016
  • Semantic search is known as a series of activities and techniques to improve the search accuracy by clearly understanding users' search intent without big cognitive efforts. Usually, semantic search engines requires ontology and semantic metadata to analyze user queries. However, building a particular ontology and semantic metadata intended for large amounts of data is a very time-consuming and costly task. This is why commercialization practices of semantic search are insufficient. In order to resolve this problem, we propose a novel semantic search method which takes advantage of our previous semantic tensor space model. Since each term is represented as the 2nd-order 'document-by-concept' tensor (i.e., matrix), and each concept as the 2nd-order 'document-by-term' tensor in the model, our proposed semantic search method does not require to build ontology. Nevertheless, through extensive experiments using the OHSUMED document collection and SCOPUS journal abstract data, we show that our proposed method outperforms the vector space model-based search method.

3D PASSAGE NAVIGATION UNDER UNKNOWN ENVIRONMENTS BASED ON DISTANCE FIELD SPACE MODEL

  • Nagata, Yoshitaka;Murai, Yasuyuki;Tsuji, Hiroyuki;Tokumasu, Shinji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.500-503
    • /
    • 2003
  • The navigation problem of robot is one of the main themes to deal with conficts or interferences between obstacles and the robot itself In this case, while the robot avoids obstacles on the space, the passage route should be determined efficiently. In order to solve problems above, we have come up with the distance field space medel (DFM) and then, under known environment, we have presented the distance field A algorithm for passage route path search. In this research, the method of performing the 3-dimensional passage route path search of robot under unknown environment is proposed. It is shown that the authors can build the distance search model the does not need space division by taking into account of sensor information to a distance field space model, and constructing this information as virtual obstacle information.

  • PDF