• Title/Summary/Keyword: Probe Link Travel Time

Search Result 25, Processing Time 0.021 seconds

The Estimation of Link Travel Time for the Namsan Tunnel #1 using Vehicle Detectors (지점검지체계를 이용한 남산1호터널 구간통행시간 추정)

  • Hong Eunjoo;Kim Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • As Advanced Traveler Information System(ATIS) is the kernel of the Intelligent Transportation System, it is very important how to manage data from traffic information collectors on a road and have at borough grip of the travel time's change quickly and exactly for doing its part. Link travel time can be obtained by two method. One is measured by area detection systems and the other is estimated by point detection systems. Measured travel time by area detection systems has the limitation for real time information because it Is calculated by the probe which has already passed through the link. Estimated travel time by point detection systems is calculated by the data on the same time of each. section, this is, it use the characteristic of the various cars of each section to estimate travel time. For this reason, it has the difference with real travel time. In this study, Artificial Neural Networks is used for estimating link travel time concerned about the relationship with vehicle detector data and link travel time. The method of estimating link travel time are classified according to the kind of input data and the Absolute value of error between the estimated and the real are distributed within 5$\~$15minute over 90 percent with the result of testing the method using the vehicle detector data and AVI data of Namsan Tunnel $\#$1. It also reduces Time lag of the information offered time and draws late delay generation and dissolution.

  • PDF

Fuzzy Logic Based Prediction of Link Travel Velocity Using GPS Information (퍼지논리 및 GPS정보를 이용한 링크통행속도의 예측)

  • Jhong, Woo-Jin;Lee, Jong-Soo;Ko, Jin-Woong;Park, Pyong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.342-347
    • /
    • 2003
  • It is essential to develop an algorithm for the estimate of link travel velocity and for the supply and control of travel information in the context of intelligent transportation information system. The paper proposes the fuzzy logic based prediction of link travel velocity. Three factors such as time, date and velocity are considered as major components to represent the travel situation. In the fuzzy modeling, those factors were expressed by fuzzy membership functions. We acquire position/velocity data through GPS antenna with PDA embedded probe vehicles. The link travel velocity is calculated using refined GPS data and the prediction results are compared with actual data for its accuracy.

A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm (적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구)

  • Kim, Eun-Jeong;Bae, Gwang-Soo;Ahn, Gye-Hyeong;Ki, Yong-Kul;Ahn, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System) directly collects link travel time in urban area by using probe vehicles. Therefore it can estimate more accurate link travel speed compared to other traffic detection systems. However, UTIS includes some missing data caused by the lack of probe vehicles and RSEs on road network, system failures, and other factors. In this study, we suggest a new model, based on k-NN algorithm, for imputing missing data to provide more accurate travel time information. New imputation model is an adaptive k-NN which can flexibly adjust the number of nearest neighbors(NN) depending on the distribution of candidate objects. The evaluation result indicates that the new model successfully imputed missing speed data and significantly reduced the imputation error as compared with other models(ARIMA and etc). We have a plan to use the new imputation model improving traffic information service by applying UTIS Central Traffic Information Center.

Fusion Strategy on Heterogeneous Information Sources for Improving the Accuracy of Real-Time Traffic Information (실시간 교통정보 정확도 향상을 위한 이질적 교통정보 융합 연구)

  • Kim, Jong-Jin;Chung, Younshik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • In recent, the number of real-time traffic information sources and providers has increased as increasing smartphone users and intelligent transportation system facilities installed at roadways including vehicle detection system (VDS), dedicated short-ranged communications (DSRC), and global positioning system (GPS) probe vehicle. The accuracy of such traffic information would vary with these heterogeneous information sources or spatiotemporal traffic conditions. Therefore, the purpose of this study is to propose an empirical strategy of heterogeneous information fusion to improve the accuracy of real-time traffic information. To carry out this purpose, travel speed data collection based on the floating car technique was conducted on 227 freeway links (or 892.2 km long) and 2,074 national highway links (or 937.0 km long). The average travel speed for 5 probe vehicles on a specific time period and a link was used as a ground truth measure to evaluate the accuracy of real-time heterogeneous traffic information for that time period and that link. From the statistical tests, it was found that the proposed fusion strategy improves the accuracy of real-time traffic information.

Estimation of Predictive Travel Times Using Ubiquitous Traffic Environment under Incident Conditions (유비쿼터스 환경에서 돌발상황 발생 시 예측적 통행시간 추정기법)

  • Park, Joon-Hyeong;Hong, Seung-Pyo;Oh, Cheol;Kim, Tae-Hyeong;Kim, Won-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.14-26
    • /
    • 2009
  • This study presented a novel method to estimate travel times under incident conditions. Predictive travel time information was defined and evaluated with the proposed method. The proposed method utilized individual vehicle speeds obtained from global positioning systems (GPS) and inter-vehicle communications(IVC) for more reliable real-time travel times. Individual vehicle trajectory data were extracted from microscopic traffic simulations using AIMSUN. Market penetration rates (MPR) and IVC ranges were explored with the accuracy of travel times. Relationship among travel time accuracy, IVC ranges, and MPR were further identified using regression analyses. The outcomes of this study would be useful to derive functional requirements associated with traffic information systems under forthcoming ubiquitous transportation environment

  • PDF

Investigating Optimal Aggregation Interval Size of Loop Detector Data for Travel Time Estimation and Predicition (통행시간 추정 및 예측을 위한 루프검지기 자료의 최적 집계간격 결정)

  • Yoo, So-Young;Rho, Jeong-Hyun;Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.109-120
    • /
    • 2004
  • Since the late of 1990, there have been number of studies on the required number of probe vehicles and/or optimal aggregation interval sizes for travel time estimation and forecasting. However, in general one to five minutes are used as aggregation intervals for the travel time estimation intervals for the travel time estimation and/or forecasting of loop detector system without a reasonable validation. The objective of this study is to deveop models for identifying optimal aggregation interval sizes of loop detector data for travel time estimation and prediction. This study developed Cross Valiated Mean Square Error (CVMSE) model for the link and route travel time forecasting, The developed models were applied to the loop detector data of Kyeongbu expressway. It was found that the optimal aggregation sizes for the travel time estimation and forecasting are three to five minutes and ten to twenty minutes, respectively.

A Methodology for Expanding Sample OD Based on Probe Vehicle (프로브 차량 기반 표본 OD의 전수화 기법)

  • Baek, Seung-Kirl;Jeong, So-Young;Kim, Hyun-Myung;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.135-145
    • /
    • 2008
  • As a fundamental input to the travel demand forecasting, OD has been always a concern in obtaining the accurate link traffic volume. Numerous methods were applied thus far without a complete success. Some existing OD estimation techniques generally extract regular samples and expand those sample into population. These methods, however, leaves some to be desired in terms of accuracy. To complement such problems, research on estimating OD using additional information such as link traffic volume as well as sample link use rate have been accomplished. In this paper, a new approach for estimating static origin-destination (OD) using probe vehicle has been proposed. More specifically, this paper tried to search an effective sample rate which varies over time and space. In a sample test network study, the traffic volume error rate of each link was set as objective function in solving the problem. As a key result the MAE (mean absolute error) between expanded OD and actual OD was identified as about 5.28%. The developed methodology could be applied with similar cases. Some limitations and future research agenda have also been discussed.

A Study for Optimized Detecter Location Considering the Traffic Characteristics in National Highway (일반국도 통행특성을 고려한 지점검지기의 적정설치지점 선정에 관한 연구)

  • Byeon, Sang-Cheol;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.19-30
    • /
    • 2006
  • This study deals with the optimized detector location considering the traffic characteristics in National Highway. Although there ave many construction works for ITS in National Highway, there is not specific criteria for detector location which can effect the accuracy of traffic information. This study. therefore. aims to Provide the optimized detector location criteria which can represent the traffic characteristics of National Highway. It collects traffic factors of study area by GPS Probe-car and defector, and Presents the optimized detector location by the correlation analysis between spot-speed and link-travel-time. The main results of this study are as followings ; First, the correlation between the spot-speed and link-travel-time Presents the opposite bell shape of the graph (U-type owe) which is increased it?on the upstream then, declined through some unspecified Point of the link. Second, the optimized detector location usually distributes around midstream of link, even though it does not have a consistency. Third, therefore, the optimized detector location generally should be located between $55{\sim}60%$ of total link length. Forth. high level of vertical slope is one of the most important factors of detector location, so it should be excluded for determination of optimized detector location. Finally, expecting that the results of this study would improve the accuracy of travel time estimation and forecasting.

A Link Travel Time Estimation Algorithm Based on Point and Interval Detection Data over the National Highway Section (일반국도의 지점 및 구간검지기 자료의 융합을 통한 통행시간 추정 알고리즘 개발)

  • Kim, Sung-Hyun;Lim, Kang-Won;Lee, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.135-146
    • /
    • 2005
  • Up to now studies on the fusion of travel time from various detectors have been conducted based on the variance raito of the intermittent data mainly collected by GPS or probe vehicles. The fusion model based on the variance ratio of intermittent data is not suitable for the license plate recognition AVIs which can deal with vast amount of data. This study was carried out to develop the fusion model based on travel time acquired from the license plate recognition AVIs and the point detectors. In order to fuse travel time acquired from the point detectors and the license plate recognition AVIs, the optimized fusion model and the proportional fusion model were developed in this study. As a result of verification, the optimized fusion model showed the superior estimation performance. The optimized fusion model is the dynamic fusion ratio estimation model on real time base, which calculates fusion weights based on real time historic data and applies them to the current time period. The results of this study are expected to be used effectively for National Highway Traffic Management System to provide traffic information in the future. However, there should be further studies on the Proper distance for the establishment of the AVIs and the license plate matching rate according to the lanes for AVIs to be established.