• Title/Summary/Keyword: Probability of identification

Search Result 269, Processing Time 0.025 seconds

On-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures

  • Lei, Ying;Wang, Longfei;Lu, Lanxin;Xia, Dandan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.789-797
    • /
    • 2017
  • Recently, some integrated structural identification/damage detection and reliability evaluation of structures with uncertainties have been proposed. However, these techniques are applicable for off-line synthesis of structural identification and reliability evaluation. In this paper, based on the recursive formulation of the extended Kalman filter, an on-line integration of structural identification/damage detection and reliability evaluation of stochastic building structures is investigated. Structural limit state is expanded by the Taylor series in terms of uncertain variables to obtain the probability density function (PDF). Both structural component reliability with only one limit state function and system reliability with multi-limit state functions are studied. Then, it is extended to adopt the recent extended Kalman filter with unknown input (EKF-UI) proposed by the authors for on-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures subject to unknown excitations. Numerical examples are used to demonstrate the proposed method. The evaluated results of structural component reliability and structural system reliability are compared with those by the Monte Carlo simulation to validate the performances of the proposed method.

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

Vessel traffic geometric probability approaches with AIS data in active shipping lane for subsea pipeline quantitative risk assessment against third-party impact

  • Tanujaya, Vincent Alvin;Tawekal, Ricky Lukman;Ilman, Eko Charnius
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • A subsea pipeline designed across active shipping lane prones to failure against external interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) for subsea pipeline against vessel anchor dropping and dragging and vessel sinking.

User Identification Using Real Environmental Human Computer Interaction Behavior

  • Wu, Tong;Zheng, Kangfeng;Wu, Chunhua;Wang, Xiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3055-3073
    • /
    • 2019
  • In this paper, a new user identification method is presented using real environmental human-computer-interaction (HCI) behavior data to improve method usability. User behavior data in this paper are collected continuously without setting experimental scenes such as text length, action number, etc. To illustrate the characteristics of real environmental HCI data, probability density distribution and performance of keyboard and mouse data are analyzed through the random sampling method and Support Vector Machine(SVM) algorithm. Based on the analysis of HCI behavior data in a real environment, the Multiple Kernel Learning (MKL) method is first used for user HCI behavior identification due to the heterogeneity of keyboard and mouse data. All possible kernel methods are compared to determine the MKL algorithm's parameters to ensure the robustness of the algorithm. Data analysis results show that keyboard data have a narrower range of probability density distribution than mouse data. Keyboard data have better performance with a 1-min time window, while that of mouse data is achieved with a 10-min time window. Finally, experiments using the MKL algorithm with three global polynomial kernels and ten local Gaussian kernels achieve a user identification accuracy of 83.03% in a real environmental HCI dataset, which demonstrates that the proposed method achieves an encouraging performance.

Establishment of an Individual Identification System Based on Microsatellite Polymorphisms in Korean Cattle (Hanwoo)

  • Yoon, Du-Hak;Kong, Hong-Sik;Oh, Jae-Don;Lee, Jun-Heon;Cho, Byung-Wook;Kim, Jong-Dae;Jeon, Ki-Jun;Jo, Chang-Yun;Jeon, Gwang-Joo;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.762-766
    • /
    • 2005
  • This study was conducted to establish an individual identification system comprising of 19 microsatellite markers located on different bovine autosomes. The markers were typed on 257 animals from five cattle breeds. In total, 112 alleles were detected from the genotyping of 19 microsatellite markers. The average heterozygosities ranged from 0.292 to 0.824 and the polymorphic information content (PIC) ranged from 0.274 to 0.817 in Hanwoo. We found that there were differences in allele frequencies in Hanwoo when compared with other cattle breeds. The calculated cumulative power of discrimination (CPD) was 99.999% when nine microsatellite loci were used for analysis in the individual identification system. Also the matching probability, the probability that two unrelated animals would show the same genotypes, was estimated to be $0.44{\times}10^{-9}$. Therefore, the nine markers used in this study will be used for individual identification in two million Hanwoo individuals.

Reinterpretation of the protein identification process for proteomics data

  • Kwon, Kyung-Hoon;Lee, Sang-Kwang;Cho, Kun;Park, Gun-Wook;Kang, Byeong-Soo;Park, Young-Mok
    • Interdisciplinary Bio Central
    • /
    • v.1 no.3
    • /
    • pp.9.1-9.6
    • /
    • 2009
  • Introduction: In the mass spectrometry-based proteomics, biological samples are analyzed to identify proteins by mass spectrometer and database search. Database search is the process to select the best matches to the experimental mass spectra among the amino acid sequence database and we identify the protein as the matched sequence. The match score is defined to find the matches from the database and declare the highest scored hit as the most probable protein. According to the score definition, search result varies. In this study, the difference among search results of different search engines or different databases was investigated, in order to suggest a better way to identify more proteins with higher reliability. Materials and Methods: The protein extract of human mesenchymal stem cell was separated by several bands by one-dimensional electrophorysis. One-dimensional gel was excised one by one, digested by trypsin and analyzed by a mass spectrometer, FT LTQ. The tandem mass (MS/MS) spectra of peptide ions were applied to the database search of X!Tandem, Mascot and Sequest search engines with IPI human database and SwissProt database. The search result was filtered by several threshold probability values of the Trans-Proteomic Pipeline (TPP) of the Institute for Systems Biology. The analysis of the output which was generated from TPP was performed. Results and Discussion: For each MS/MS spectrum, the peptide sequences which were identified from different conditions such as search engines, threshold probability, and sequence database were compared. The main difference of peptide identification at high threshold probability was caused by not the difference of sequence database but the difference of the score. As the threshold probability decreases, the missed peptides appeared. Conversely, in the extremely high threshold level, we missed many true assignments. Conclusion and Prospects: The different identification result of the search engines was mainly caused by the different scoring algorithms. Usually in proteomics high-scored peptides are selected and low-scored peptides are discarded. Many of them are true negatives. By integrating the search results from different parameter and different search engines, the protein identification process can be improved.

Estimating Suitable Probability Distribution Function for Multimodal Traffic Distribution Function

  • Yoo, Sang-Lok;Jeong, Jae-Yong;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • The purpose of this study is to find suitable probability distribution function of complex distribution data like multimodal. Normal distribution is broadly used to assume probability distribution function. However, complex distribution data like multimodal are very hard to be estimated by using normal distribution function only, and there might be errors when other distribution functions including normal distribution function are used. In this study, we experimented to find fit probability distribution function in multimodal area, by using AIS(Automatic Identification System) observation data gathered in Mokpo port for a year of 2013. By using chi-squared statistic, gaussian mixture model(GMM) is the fittest model rather than other distribution functions, such as extreme value, generalized extreme value, logistic, and normal distribution. GMM was found to the fit model regard to multimodal data of maritime traffic flow distribution. Probability density function for collision probability and traffic flow distribution will be calculated much precisely in the future.

Identification of Implementation Strategy by Practical Interpretations of Significance Level, Significance Probability, and Known Parameters in Statistical Inferences (통계적 추론에서 유의수준, 유의확률과 모수기지의 실무적 해석에 의한 적용방안)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.75-80
    • /
    • 2012
  • The research presents a guideline for quality practitioners to provide a full comprehension of differences in theoretical and practical interpretations of assumed sampling errors of and significance probability of calculated p-value. Besides, the study recommends the use of statistical inferences methods with known parameters to identify the improvement effects. In practice, the quality practitioners obtain the known parameters through systematic quality Database (DB) activities.

  • PDF

An Analysis on the Identification Rate of Detection System Using Non-Homogeneous Discrete Absorbing Markov Chains (비 동질성 이산시간 흡수마코프체인을 활용한 탐지체계의 식별률 분석에 관한 연구)

  • Kim, Seong-Woo;Yoon, Bong-Kyoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.2
    • /
    • pp.31-42
    • /
    • 2015
  • The purpose of airborne radars is to detect and identify approaching targets as early as possible. If the targets are identified as enemies, detection systems must provide defense systems with information of the targets to counter. Though many previous studies based on the detection theory of the target have shown various ways to derive detection probability of each radar, optimal arrangement of radars for effective detection, and determination of the search pattern, they did not reflect the fact that most military radar sites run multiple radars in order to increase the accuracy of identifications by radars. In this paper, we propose a model to analyze the probability of identification generated by the multiple radars using non-homogeneous absorbing markov chains. Our results are expected to help the military commanders counter the enemy targets effectively by using radars in a way to maximize the identification rate of targets.

Transmission Probability Control Scheme in FSA-based RFID Systems

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.677-681
    • /
    • 2010
  • This paper proposes a transmission probability control scheme for enhancing the performances of FSA-based RFID system. In order to maximize the system performance, the number of tags attempting to transmit their identifiers in a frame should be kept at a proper level. The reader calculates the transmission probability according to the number of tags within the identification range of reader and then broadcasts it to tags. Tags, in which their slot counter values reach to zero, attempt to transmit their identifiers with the received probability. Simulation results show that the proposed scheme can offer better throughput and delay performance than the conventional one regardless of the number of tags.