• Title/Summary/Keyword: Probability of damage occurrence

Search Result 58, Processing Time 0.024 seconds

A Research on Process of Estimation about Frequency and Loss of Risk by distribution of Probability (확률분포에 의한 리스크 빈도수와 손실규모 추정 프로세스 연구)

  • Lee, Young-Jai;Lee, Seong-Il
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.2
    • /
    • pp.67-82
    • /
    • 2008
  • Risk that breed large size disaster is happening variously for cause at social. natural a management. Incidence and damage scale are trend that increase rapidly than past. In these circumstance, to keep operational continuity of organization, area, society, risk management action that establish systematic counter measure estimating and analyze occurrence possibility and expectation damage of risk is essential indispensable issue and the best countermeasure. Risk management action does by main purpose establish optimum disaster reduction countermeasure. To deduce various countermeasure, process that estimate and analyze occurrence possibility and expectation damage of risk is essential indispensable issue. Therefore, this paper studies process design that can presume risk occurrence frequency and damage scale through distribution of probability.

  • PDF

Incorporation of collapse safety margin into direct earthquake loss estimate

  • Xian, Lina;He, Zheng;Ou, Xiaoying
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.429-450
    • /
    • 2016
  • An attempt has been made to incorporate the concept of collapse safety margin into the procedures proposed in the performance-based earthquake engineering (PBEE) framework for direct earthquake loss estimation, in which the collapse probability curve obtained from incremental dynamic analysis (IDA) is mathematically characterized with the S-type fitting model. The regressive collapse probability curve is then used to identify non-collapse cases and collapse cases. With the assumed lognormal probability distribution for non-collapse damage indexes, the expected direct earthquake loss ratio is calculated from the weighted average over several damage states for non-collapse cases. Collapse safety margin is shown to be strongly related with sustained damage endurance of structures. Such endurance exhibits a strong link with expected direct earthquake loss. The results from the case study on three concrete frames indicate that increase in cross section cannot always achieve a more desirable output of collapse safety margin and less direct earthquake loss. It is a more effective way to acquire wider collapse safety margin and less direct earthquake loss through proper enhancement of reinforcement in structural components. Interestingly, total expected direct earthquake loss ratio seems to be insensitive a change in cross section. It has demonstrated a consistent correlation with collapse safety margin. The results also indicates that, if direct economic loss is seriously concerned, it is of much significance to reduce the probability of occurrence of moderate and even severe damage, as well as the probability of structural collapse.

Stochastic Probability Model for Preventive Management of Armor Units of Rubble-Mound Breakwaters (경사제 피복재의 유지관리를 위한 추계학적 확률모형)

  • Lee, Cheol-Eung;Kim, Sang Ug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1007-1015
    • /
    • 2013
  • A stochastic probability model based on the non-homogeneous Poisson process is represented that can correctly analyze the time-dependent linear and nonlinear behaviors of total damage over the occurrence process of loads. Introducing several types of damage intensity functions, the probability of failure and the total damage with respect to mean time to failure has been investigated in detail. Taking particularly the limit state to be the random variables followed with a distribution function, the uncertainty of that would be taken into consideration in this paper. In addition, the stochastic probability model has been straightforwardly applied to the rubble-mound breakwaters with the definition of damage level about the erosion of armor units. The probability of failure and the nonlinear total damage with respect to mean time to failure has been analyzed with the damage intensity functions for armor units estimated by fitting the expected total damage to the experimental datum. Based on the present results from the stochastic probability model, the preventive management for the armor units of the rubble-mound breakwaters would be suggested to make a decision on the repairing time and the minimum amounts repaired quantitatively.

Assessment of spalling occurrence using fuzzy probability theory and damage index in underground openings (퍼지확률이론과 손상지수를 이용한 지하암반공동에서의 스폴링 발생 평가)

  • Bang, Joon-Ho;Lee, Kang-Hyun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2010
  • Spalling is a kind of instability phenomenon of surrounding rock around underground openings subjected to high in-situ stress according to the development of extension fractures. Three kinds of spalling criteria have been presented so far; however, all spalling criteria have the range of values so that the fuzziness and vagueness of spalling criterion cannot be avoided. In this study, a new fuzzy probability model is proposed to predict the probability of spalling in a systematic way by using fuzzy probability theory. Many of the underground opening projects worldwide are evaluated with the proposed method. Prediction results expressed as the spalling probability agree well with the in-situ observations. In particular, a new fuzzy probability model considering all three evaluation indices of spalling by adopting weighting factors based on relative reliability among three evaluation indices is able to resolve erroneous prediction of spalling by choosing only one prediction method. Moreover, the more reasonable value of spalling probability could have been obtained by adopting the modified damage index to the newly proposed fuzzy probability model.

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

An Assessment Pipe Damage Probability of High Pressure Underground Pipeline in Industrial Estate (산업단지 고압매설배관의 손상확률 평가)

  • Kim, jin-jun;Rhie, Kwang-Won;Choi, hun-ung;Choi, ji-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.9-16
    • /
    • 2019
  • The frequency of major accidents which has probability of occurrence at the high pressure underground pipeline of industrial estate such an Ulsan, Yeo-ju by the other construction such as an excavation work will be compared to city gas underground pipeline to derive the basic event by the FTA and present. Also, Observe and analyze the pipe damage impact factor such as an excavation frequency, patrol cycle. As a result, It contributes to the safety improvement of high pressure gas buried pipeline due to obtain importance and sensitivity of the pipe damge impact factors.

Earthquake Resistant Design of Steel Box Bridges considering Failure Mechanism (파괴메카니즘을 고려한 강박스교량의 내진설계)

  • 국승규;이동휘
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.330-337
    • /
    • 2002
  • The objective of the earthquake resistant design of structures is to satisfy on the one side the minimization of damage requirement under earthquakes with high probability of occurrence during the design life and on the other side the no collapse requirement under the design seismic event with low probability of occurrence. The two requirements are satisfied with the minimum strength of substructure as well as the ductile failure mechanism presented in the codes. In this study seismic performance is evaluated with two bridges which have steel box superstructures and T type, II type piers as substructures. In order to satisfy the two requirements redesign of both substructures and steel bearings are carried out.

  • PDF

Impact Analysis of Construction Delay: The Case of Defects In the Top-down Construction Method

  • Suk, Janghwan;Kwon, Woobin;Soe, Jang-woo;Cho, Hunhee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.213-221
    • /
    • 2022
  • Defects are the risk factors in the construction process of buildings. They cause damage, delaying the construction duration. They especially cause adverse effects on the top-down construction method. This study analyzed the degree of construction delay induced by each work type, focusing on defects in the top-down method. Then, we derived construction delay induction coefficient from different work types in order by using the severity of construction delay per defect and the occurrence probability of defect; this assessment model measures the impact of defects on construction delay for each work type. Furthermore, by comparing each work type based on the defect frequency and the construction delay induction coefficient, we found work types that need to be administered attentively. We identified that plastering work was easy to overlook, requiring caution in defect management. This study provides an efficient defect management system suitable for the buildings that are built using the top-down construction method.

  • PDF

Development of seismic fragility curves for high-speed railway system using earthquake case histories

  • Yang, Seunghoon;Kwak, Dongyoup;Kishida, Tadahiro
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • Investigating damage potential of the railway infrastructure requires either large amount of case histories or in-depth numerical analyses, or both for which large amounts of effort and time are necessary to accomplish thoroughly. Rather than performing comprehensive studies for each damage case, in this study we collect and analyze a case history of the high-speed railway system damaged by the 2004 M6.6 Niigata Chuetsu earthquake for the development of the seismic fragility curve. The development processes are: 1) slice the railway system as 200 m segments and assigned damage levels and intensity measures (IMs) to each segment; 2) calculate probability of damage for a given IM; 3) estimate fragility curves using the maximum likelihood estimation regression method. Among IMs considered for fragility curves, spectral acceleration at 3 second period has the most prediction power for the probability of damage occurrence. Also, viaduct-type structure provides less scattered probability data points resulting in the best-fitted fragility curve, but for the tunnel-type structure data are poorly scattered for which fragility curve fitted is not meaningful. For validation purpose fragility curves developed are applied to the 2016 M7.0 Kumamoto earthquake case history by which another high-speed railway system was damaged. The number of actual damaged segments by the 2016 event is 25, and the number of equivalent damaged segments predicted using fragility curve is 22.21. Both numbers are very similar indicating that the developed fragility curve fits well to the Kumamoto region. Comparing with railway fragility curves from HAZUS, we found that HAZUS fragility curves are more conservative.