• Title/Summary/Keyword: Probability density estimation

Search Result 221, Processing Time 0.016 seconds

Barium Compounds through Monte Carlo Simulations Compare the Performance of Medical Radiation Shielding Analysis (몬테카를로 시뮬레이션을 통한 바륨화합물의 의료방사선 차폐능 비교 분석)

  • Kim, Seonchil;Kim, Kyotae;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.403-408
    • /
    • 2013
  • This study made a tentative estimation of the shielding rate of barium compound by thickness through monte carlo simulation to apply medical radiation shielding products that can replace existing lead. Barium sulfate($BaSO_4$) was used for the shielding material, and thickness of the shielding material specimen was simulated from 0.1 mm to 5 mm by applying $15{\times}15cm^2$ of specimen area, $4.5g/cm^3$ of density of barium sulfate, and $11.34g/cm^3$ density of lead. Entered source was simulated with 10kVp Step in consecutive X-ray energy spectrum(40 kVp ~ 120 kVp). Absorption probability in 40 kVp ~ 60 kVp showed same shielding rate with lead in 3 mm ~ 5 mm of thickness, but it was identified that under 2 mm, the shielding rate was a bit lower than the existing lead shielding material. Also, the shielding rate in 70 kVp ~ 120 kVp energy band showed similar performance as the existing lead shielding material, but it was tentatively estimated as fairly low shielding rate below 0.5 mm. This study estimated the shielding rate of barium compound as the thickness function of x-ray energy band for medical radiation through monte carlo simulation, and made comparative analysis with existing lead. Also, this study intended to verify application validity of the x-ray shielding material for medical radiation of pure barium sulfate. As a result, it was estimated that the shielding effect was 95% higher than the existing lead 1.5 mm in at least 2 mm thickness of barium compound in medical radiation energy band 70 kVp ~ 120 kVp, and this result is considered valid to be provided as a base data in weight lightening production of radiation shielding product for medical radiation.