• 제목/요약/키워드: Probability Robot

검색결과 94건 처리시간 0.03초

딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘 (Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model)

  • 고광은;박현지;장인훈
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘 (Real-Time Motion Estimation Algorithm for Mobile Surveillance Robot)

  • 한철훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.311-316
    • /
    • 2009
  • 본 논문에서는 파티클 필터(Particle Filter)를 사용한 모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘을 제안한다. 파티클 필터는 몬테카를로(Monte Carlo) 샘플링 방법을 기반으로 사전분포확률(Prior distribution probability)와 사후분포확률(Posterior distribution probability)을 가지는 베이지안 조건 확률 모델(Bayesian conditional probabilities model)을 사용하는 방법이다. 그러나 대부분의 파티클 필터에서는 초기 확률밀도(Prior probability density)를 임의로 정의하여 사용하지만, 본 논문에서는 Sum of Absolute Difference (SAD)를 이용하여 초기 확률밀도를 구하고, 이를 파티클 필터에 적용하여 모바일 감시 로봇 환경에서 임의로 움직이는 물체를 강인하게 실시간으로 추정하고 추적하는 시스템을 구현하였다.

Improved Exploration Algorithm Using Reliability Index of Thinning Based Topological Nodes

  • Kwon, Tae-Bum;Song, Jae-Bok;Lee, Soo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.250-255
    • /
    • 2005
  • For navigation of a service robot, mapping and localization are very important. To estimate the robot pose, the map of the environment is required and it can be built by exploration or SLAM. Exploration is the fundamental task of guiding a robot autonomously during mapping such that it covers the entire environment with its sensors. In this paper, an efficient exploration scheme based on the position probability of the end nodes of a topological map is proposed. In this scheme, a topological map is constructed in real time using the thinning-based approach. The robot then updates the position probability of each end node maintaining its position at the current location based on the Bayesian update rule using the range data. From this probability, the robot can determine whether or not it needs to visit the specific end node to examine the environment around this node. Various experiments show that the proposed exploration scheme can perform exploration more efficiently than other schemes in that, in most cases, exploration for the entire environment can be completed without directly visiting everywhere in the environment.

  • PDF

Recursive Unscented Kalman Filtering based SLAM using a Large Number of Noisy Observations

  • Lee, Seong-Soo;Lee, Suk-Han;Kim, Dong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.736-747
    • /
    • 2006
  • Simultaneous Localization and Map Building(SLAM) is one of the fundamental problems in robot navigation. The Extended Kalman Filter(EKF), which is widely adopted in SLAM approaches, requires extensive computation. The conventional particle filter also needs intense computation to cover a high dimensional state space with particles. This paper proposes an efficient SLAM method based on the recursive unscented Kalman filtering in an environment including a large number of landmarks. The posterior probability distributions of the robot pose and the landmark locations are represented by their marginal Gaussian probability distributions. In particular, the posterior probability distribution of the robot pose is calculated recursively. Each landmark location is updated with the recursively updated robot pose. The proposed method reduces filtering dimensions and computational complexity significantly, and has produced very encouraging results for navigation experiments with noisy multiple simultaneous observations.

효율적 환경탐사를 위한 이동로봇 경로 계획기 (Mobile Robot Path Planner for Environment Exploration)

  • 배정연;이수용;이범희
    • 로봇학회논문지
    • /
    • 제1권1호
    • /
    • pp.9-16
    • /
    • 2006
  • The Mobile robots are increasingly being used to perform tasks in unknown environments. The potential of robots to undertake such tasks lies in their ability to intelligently and efficiently search in an environment. An algorithm has been developed for robots which explore the environment to measure the physical properties (dust in this paper). While the robot is moving, it measures the amount of dust and registers the value in the corresponding grid cell. The robot moves from local maximum to local minimum, then to another local maximum, and repeats. To reach the local maximum or minimum, simple gradient following is used. Robust estimation of the gradient using perturbation/correlation, which is very effective when analytical solution is not available, is described. By introducing the probability of each grid cell, and considering the probability distribution, the robot doesn't have to visit all the grid cells in the environment still providing fast and efficient sensing. The extended algorithm to coordinate multiple robots is presented with simulation results.

  • PDF

데이터 연관 필터를 이용한 자율이동로봇의 초음파지도 작성 (Sonar Map Construction for Autonomous Mobile Robots Using Data Association Filter)

  • 이유철;임종환;조동우
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권9호
    • /
    • pp.539-546
    • /
    • 2005
  • This paper describes a method of building the probability grid map for an autonomous mobile robot using the ultrasonic DAF(data association filter). The DAF, which evaluates the association of each data with the rest and removes the data affected by the specular reflection effect, can improve the reliability of the data for the Probability grid map. This method is based on the evaluation of possibility that the acquired data are all from the same object. Namely, the data from specular reflection have very few possibilities of detecting the same object, so that they are excluded from the data cluster during the process of the DAF. Therefore, the uncertain data corrupted by the specular reflection and/or multi-path effect, are not used to update the probability map, and hence building a good quality of a grid map is possible even in a specular environment. In order to verify the effectiveness of the DAF, it was applied to the Bayesian model and the orientation probability model which are the typical ones of a grid map. We demonstrate the experimental results using a real mobile robot in the real world.

An analysis of the component of Human-Robot Interaction for Intelligent room

  • Park, Jong-Chan;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2143-2147
    • /
    • 2005
  • Human-Robot interaction (HRI) has recently become one of the most important issues in the field of robotics. Understanding and predicting the intentions of human users is a major difficulty for robotic programs. In this paper we suggest an interaction method allows the robot to execute the human user's desires in an intelligent room-based domain, even when the user does not give a specific command for the action. To achieve this, we constructed a full system architecture of an intelligent room so that the following were present and sequentially interconnected: decision-making based on the Bayesian belief network, responding to human commands, and generating queries to remove ambiguities. The robot obtained all the necessary information from analyzing the user's condition and the environmental state of the room. This information is then used to evaluate the probabilities of the results coming from the output nodes of the Bayesian belief network, which is composed of the nodes that includes several states, and the causal relationships between them. Our study shows that the suggested system and proposed method would improve a robot's ability to understand human commands, intuit human desires, and predict human intentions resulting in a comfortable intelligent room for the human user.

  • PDF

Improvement of location positioning using KNN, Local Map Classification and Bayes Filter for indoor location recognition system

  • Oh, Seung-Hoon;Maeng, Ju-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.29-35
    • /
    • 2021
  • 본 논문에서는 위치 측위의 정확도를 높일 수 있는 방안으로 KNN(K-Nearest Neighbor)과 Local Map Classification 및 Bayes Filter를 융합한 기법을 제안한다. 먼저 이 기법은 Local Map Classification이 실제 지도를 여러 개의 Cluster로 나누고, 다음으로 KNN으로 Cluster들을 분류한다. 그리고 Bayes Filter가 획득한 각 Cluster의 확률을 통하여 Posterior Probability을 계산한다. 이 Posterior Probability으로 로봇이 위치한 Cluster를 검색한다. 성능 평가를 위하여 KNN과 Local Map Classification 및 Bayes Filter을 적용하여서 얻은 위치 측위의 결과를 분석하였다. 분석 결과로 RSSI 신호가 변하더라도 위치 정보는 한 Cluster에 고정되면서 위치 측위의 정확도가 높아진다는 사실을 확인하였다.

문법적 진화기법과 조건부 확률을 이용한 청소 로봇의 이동 패턴 계획 (Designing the Moving Pattern of Cleaning Robot based on Grammatical Evolution with Conditional Probability Table)

  • 권순조;김현태;안창욱
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권4호
    • /
    • pp.184-188
    • /
    • 2016
  • 청소 로봇은 가정에서 사용 가능한 대표적인 지능형 로봇이다. 고가형 청소 로봇은 센서로부터 정보를 제공받아 높은 커버리지 성능을 가진 알고리즘이 존재하지만, 저가형의 청소 로봇엔 적용하기 어렵다. 본 논문은 저가형의 청소 로봇과 같은 환경에서 효율적인 움직임을 구현하기 위해 문법적 진화기법 기반의 청소 로봇의 이동 패턴을 계획하는 알고리즘을 제안한다. 이를 위해 배커스-나우르 표기법을 사용하여 이동 패턴 문법을 정의하고 진화연산을 통해 최적화된 프로그램을 생성하였다. 이와 더불어 프로그램 생성 과정에서 획득한 문법 요소 간 조건부 확률 정보를 활용하였다. 제안 알고리즘의 성능 검증을 위해 청소 로봇 시뮬레이션을 활용하여 기존 알고리즘과 성능을 비교하였으며 실험 결과를 통해 본 논문에서 제안한 기법의 효율성을 확인하였다.

A Region Search Algorithm and Improved Environment Map Building for Mobile Robot Navigation

  • Jin, Kwang-Sik;Jung, Suk-Yoon;Son, Jung-Su;Yoon, Tae-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.71.1-71
    • /
    • 2001
  • In this paper, an improved method of environment map building and a region search algorithm for mobile robot are presented. For the environment map building of mobile robot, measurement data of ultrasonic sensors and certainty grid representation is usually used. In this case, inaccuracies due to the uncertainty of ultrasonic data are included in the map. In order to solve this problem, an environment map building method using a Bayesian model was proposed previously[5]. In this study, we present an improved method of probability map building that uses infrared sensors and shift division Gaussian probability distribution with the existing Bayesian update method using ultrasonic sensors. Also, a region search algorithm for ...

  • PDF