• Title/Summary/Keyword: Probability Rainfall

Search Result 340, Processing Time 0.026 seconds

Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

An Evaluation of Landslide Probability by Maximum Continuous Rainfall in Gangwon, Korea (강원지역의 최대연속강우량에 의한 산사태 발생가능성 평가)

  • Yang, In-Tae;Park, Jae-Kook;Jeon, Woo-Hyun;Chun, Ki-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2007
  • Most natural disasters in Korea are caused by meteorological natural phenomena, which include storms, heavy rains, heavy snow, hail, tidal waves, and earthquakes. Rainfall is the most frequent cause of disasters and accounts for about 80% of all disasters. Particularly in recent years, Korea has seen annual occurrences of natural disasters associated with landslides (slope and retaining wall collapse and burying) due to meteorological causes from the increasing intensity of heavy rains including local heavy rainfalls. In Korea, it is critical to analyze the characteristics of landslides according to rainfall characteristics and to take necessary and proper measures for them. This study assessed the possibility of landslides in the Gangwon region with a geographic information system by taking into account the inducer factors of landslides and the maximum continuous rainfall of each area. It also analyzed areas susceptible to landslides and checked the distribution of landslide-prone areas by considering the rainfall characteristics of those areas.

  • PDF

Affecting Discharge of Flood Water in Paddy Field from Selecting Rainfall with Fixed and Unfixed Duration (고정, 임의시간 강우량 선택에 따른 농경지 배수 영향 분석)

  • Hwang, Dong Joo;Kim, Byoung Gyu;Shim, Jwa Keun
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.64-76
    • /
    • 2012
  • Recently, it has been increased disaster of crops and agricultural facilities with climate change such as regional storm, typhoon. However agricultural facilities have unsafe design criteria of improving drainage corresponding to this change. This study has analyzed the impact that inundation area and magnitude of drainage-facility is decided based on fixed- and unfixed-duration precipitation by applying revised design criteria of drainage for climate change. The result was shown that 1-day and 2-days rainfall for 20-years return period has increased about 11.4%, 4.4% respectively by changing fixed- to unfixed duration. And the increase rate of design flood was 15.0%. The result was also shown that Inundation area was enlarged by 6.6% as well as increased inundation duration under same basic condition in designed rainfall between fixed- and unfixed-duration. According to the analysis, it is necessary for pump capacity in unfixed-duration to be increased by 70% for same effect with fixed-duration. Therefore, when computing method of probability precipitation is changed from fixed one to unfixed-duration by applying revised design criteria, there seems to be improving effect in drainage design. Because 1440-minutes rainfall for 20-years return period with unfixed-duration is more effective than 1-day rainfall for 30-years return period with fixed-duration. By applying unfixed-duration rainfall, capacity of drainage facilities need to be expanded to achieve the same effects (Inundation depth & duration) with fixed-duration rainfall. Further study is required for considering each condition of climate, topography and drainage by applying revised design criteria.

  • PDF

Estimation of Design Rainfalls Considering an Increasing Trend in Rainfall Data (강우량의 증가 경향성을 고려한 목표년도 확률강우량 산정)

  • Kwon, Young-Moon;Park, Jin-Won;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.131-139
    • /
    • 2009
  • Recently frequent occurrences of heavy rainfall and increases of rainfall intensity resulted in severe flood damage in Korea. In order to mitigate the vulnerability of flood, it is necessary to estimate proper design rainfalls considering the increasing trend of extreme rainfalls for hydrologic planning and design. This study focused the estimation of design rainfalls in a design target year. Tests of trend indicated that there are 7 sites showing increasing trends among 56 sites which have hourly data more than 30 years in Korea. This study analyzed the relationship between mean of annual maximum rainfalls and parameters of the Gumbel distribution. Based on the relationship, this study estimated the probability density function and design rainfalls in a design target year, and then constructed the rainfall-frequency curve. The proposed method estimated the design rainfalls 6-20% higher than those from the stationary rainfall frequency analysis.

Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (I) (Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (I))

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.25-36
    • /
    • 2004
  • This study was conducted to derive the design rainfall by the consecutive duration using the at-site frequency analysis. Using the errors, K-S tests and LH-moment ratios, Log Pearson type 3 (LP3) and Generalized Extreme Value (GEV) distributions of Gamma and Non-Gamma Family, respectively were identified as the optimal probability distributions among applied distributions. Parameters of GEV and LP3 distributions were estimated by the method of L and LH-moments and the Indirect method of moments respectively. Design rainfalls following the consecutive duration were derived by at-site frequency analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE) and relative efficiency (RE) in RRMSE for the design rainfall derived by at-site analysis in the observed and simulated data were computed and compared. It has shown that at-site frequency analysis by GEV distribution using L-moments is confirmed as more reliable than that of GEV and LP3 distributions using LH-moments and Indirect method of moments in view of relative efficiency.

Estimation of Design Rainfall by the Regional Frequency Analysis - On the method of L-moments - (지역화빈도분석에 의한 설계강우량 추정 - L-모맨트법을 중심으로 -)

  • Lee, Soon-Hyuk;Park, Jong-Hwa;Ryoo, Kyong-Sik;Jee, Ho-Keun;Jeon, Taek-Ki;Shin, Yong-Hee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.319-323
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among apt]lied distributions. regional and at-site parameters of the Generalized extreme value distribution were estimated by the method of L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Estimation of Design Rainfalls Considering BCM2 Simulation Results (BCM2 모의 결과를 반영한 목표연도 확률강우량 산정)

  • Lee, Chang Hwan;Kim, Tae-Woong;Kyoung, Minsoo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.269-276
    • /
    • 2010
  • Climatic disasters are globally soaring due to recent acceleration of global warming. Especially the occurrence frequency of heavy rainfalls is increasing since the rainfall intensity is increasing due to the change of rainfall pattern, This study proposed the non-stationary frequency analysis for estimating design rainfalls in a design target year, considering the change of rainfall pattern through the climatic change scenario. The annual rainfalls, which are regionally downscaled from the BCM2 (A2 scenario) and NCEP data using a K-NN method, were used to estimate the parameters of a probability distribution in a design target year, based on the relationship between annual mean rainfalls and distribution parameters. A Gumbel distribution with a probability weighted method was used in this study. Seoul rainfall data, which are the longest observations in Korea, were used to verified the proposed method. Then, rainfall data at 7 stations, which have statistical trends in observations in 2006, were used to estimate the design rainfalls in 2020. The results indicated that the regional annual rainfalls, which were estimated through the climate change scenario, significantly affect on the design rainfalls in future.

A Study on the Management Method of Agricultural reservoir Using RCP Scenario (RCP 시나리오 분석을 통한 농업용 저수지 관리방안에 관한 연구)

  • Choo, Yeon Moon;Won, Chang Hee;Kim, Seong Ryul;Gwon, Chang Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • A reservoir is defined as an artificial facility that stores and controls water during floods and droughts. Korea has constructed and managed reservoirs all over the country to benefit farming communities. The importance of reservoirs has decreased gradually due to urbanization and the spread of tap water, but the importance of water is increasing because of the recent shortage of water and the resulting rise in the price of water resources. Therefore, this study suggests countermeasures through an analysis of the used threshold for agricultural reservoirs. To this end, the forecast of rainfall up to 2100 was first analyzed using flood estimates and RCP scenarios through rainwater data collection. The increase in the RCP 8.5 scenario, the largest increase in the probability rainfall, was calculated by adding it to the current probability rainfall, and it was predicted that the marginal height of Odong Dam would reach its limit in 2028. Therefore, as a countermeasure against this, the measures to secure effective water storage were suggested through measures, such as lowering the height of Yeosu and installing movable beams. Overall, it is expected that effective management of the reservoirs used for agriculture will be possible in the future.

The Relationship between GMS-5 IR1 Brightness Temperature and AWS Rainfall: A heavy rain event over the mid-western part of Korea for August 5-6, 1998 (GMS-5 IR1 밝기온도와 AWS 강우량의 관계성: 1998년 8월 중서부지역 집중호우 사례)

  • 권태영
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.15-31
    • /
    • 2001
  • The relationship between GMS-5 IR1 brightness temperature (CTT:cloud top temperature) and AWS (automatic weather station) rainfall is investigated on a heavy rain event over the mid-western part of Korea for August 5-6, 1998. It is found that a temporal variability of the heavy rain can be described in detail y the time series of rain area and rain rates over the study area that are calculated from AWS accumulated rainfalls for 15 minutes. A time period of 0030-0430 LST 6 August 1998 is chosen in the time series as a heavy rain period which has relatively small rain area (20~25%) and very strong rain rates(6~9 mm/15 min.) with a good time continuity. In the heavy rain period, CTT of a point and AWS 15-minute rainfall beneath that point are compared. From the comparison, AWS rainfalls are shown to be not closely correlated with CTT. In the range of CTT lower than -5$0^{\circ}C$ where most AWS with rain are distributed, the probability of rain is at most about 30%. However, when the satellite images are shifted by 2~3 pixels southward and 3 pixels westward for the geometric correction of images, AWS rainfalls are shown to be statistically correlated with CTT (correlation coefficient:-0.46). Most AWS with rain are distributed in the much lower CTT range(lower than -58$^{\circ}C$), but there is still not much change in the rain probability. Even though a temporal change of CTT is taken into account, the rain probability amount to at most 50~55% in the same range.

A Study on the Improvement of Probability Maximum Precipitation and Probability Maximum Flood Estimation (가능최대강수량 및 홍수량 산정에 대한 개선방안 연구)

  • Chun, Si-Young;Moon, Young-Il;Ahn, Jae-Hyun;Kim, Jong-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1762-1766
    • /
    • 2006
  • In order to protect properties and human lives from disasters such as heavy rainfall, rational Probability Maximum Flood(PMF) estimation procedures for existing dam basins are recently required. This study analyzes the Probable Maximum Flood(PMF) as a part of a counterplan for disaster preventions of hydraulic structures such as dams, according to recent unfavorable weather conditions. In this study, an improvement method of parameter estimation was proposed, being estimated as an appropriate method for application to the unit hydrograph, the time of concentration and storage constant corresponding to the discharge of flood were considered differently when estimating PMF in Hoengseong dam basin.

  • PDF