• Title/Summary/Keyword: Probability Neural Network

Search Result 233, Processing Time 0.03 seconds

Verification and estimation of a posterior probability and probability density function using vector quantization and neural network (신경회로망과 벡터양자화에 의한 사후확률과 확률 밀도함수 추정 및 검증)

  • 고희석;김현덕;이광석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.325-328
    • /
    • 1996
  • In this paper, we proposed an estimation method of a posterior probability and PDF(Probability density function) using a feed forward neural network and code books of VQ(vector quantization). In this study, We estimates a posterior probability and probability density function, which compose a new parameter with well-known Mel cepstrum and verificate the performance for the five vowels taking from syllables by NN(neural network) and PNN(probabilistic neural network). In case of new parameter, showed the best result by probabilistic neural network and recognition rates are average 83.02%.

  • PDF

Structural Damage Assessment Using the Probability Distribution Model of Damage Patterns (손상패턴의 확률밀도함수에 따른 구조물 손상추정)

  • 조효남;이성칠;오달수;최윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.357-365
    • /
    • 2003
  • The major problems with the conventional neural network, especially Back Propagation Neural Network, arise from the necessity of many training data for neural network learning and ambiguity in the relation of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damage of structure to avoid those drawbacks of the conventional neural network. In the PNN-based pattern classification problems, the probability density function for patterns is usually assumed by Gaussian distribution. But, in this paper, several probability density functions are investigated in order to select the most approriate one for structural damage assessment.

  • PDF

Concept Drift Based on CNN Probability Vector in Data Stream Environment

  • Kim, Tae Yeun;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.147-151
    • /
    • 2020
  • In this paper, we propose a method to detect concept drift by applying Convolutional Neural Network (CNN) in a data stream environment. Since the conventional method compares only the final output value of the CNN and detects it as a concept drift if there is a difference, there is a problem in that the actual input value of the data stream reacts sensitively even if there is no significant difference and is incorrectly detected as a concept drift. Therefore, in this paper, in order to reduce such errors, not only the output value of CNN but also the probability vector are used. First, the data entered into the data stream is patterned to learn from the neural network model, and the difference between the output value and probability vector of the current data and the historical data of these learned neural network models is compared to detect the concept drift. The proposed method confirmed that only CNN output values could be used to reduce detection errors compared to how concept drift were detected.

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

Probabilistic Neural Network-Based Damage Assessment for Bridge Structures (확률신경망에 기초한 교량구조물의 손상평가)

  • Cho, Hyo-Nam;Kang, Kyoung-Koo;Lee, Sung-Chil;Hur, Choon-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.169-179
    • /
    • 2002
  • This paper presents an efficient algorithm for the estimation of damage location and severity in structure using Probabilistic Neural Network (PNN). Artificial neural network has been being used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training data for neural network learning and ambiguity in the relation of neural network architecture with convergence of solution. In this paper, PNN is used as a pattern classifier to overcome those problems in the conventional neural network. The basic idea of damage assessment algorithm proposed in this paper is that modal characteristics from a damaged structure are compared with the training patterns which represent the damage in specific element to determine how close it is to training patterns in terms of the probability from PNN. The training pattern that gives a maximum probability implies that the element used in producing the training pattern is considered as a damaged one. The proposed damage assessment algorithm using PNN is applied to a 2-span continuous beam model structure to verify the algorithm.

A Study on the Bayesian Recurrent Neural Network for Time Series Prediction (시계열 자료의 예측을 위한 베이지안 순환 신경망에 관한 연구)

  • Hong Chan-Young;Park Jung-Hoon;Yoon Tae-Sung;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1295-1304
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network is proposed to predict time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one needs to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, the weights vector is set as a state vector of state space method, and its probability distributions are estimated in accordance with the particle filtering process. This approach makes it possible to obtain more exact estimation of the weights. In the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent neural network with Bayesian inference, what we call Bayesian recurrent neural network (BRNN), is expected to show higher performance than the normal neural network. To verify the proposed method, the time series data are numerically generated and various kinds of neural network predictor are applied on it in order to be compared. As a result, feedback structure and Bayesian learning are better than feedforward structure and backpropagation learning, respectively. Consequently, it is verified that the Bayesian reccurent neural network shows better a prediction result than the common Bayesian neural network.

Prediction of Failure Probability of Breakwater using Neural Network (신경망을 활용한 사석식 방파제의 파괴확률예측)

  • Kim, Dong-Hyawn;Park, Woo-Sun;Han, Sang-Hun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.347-351
    • /
    • 2003
  • A new approach to reliability analysis of rubble mound breakwater using neural network is proposed. At first, a neural network model which can estimate the stability number of any breakwaters for some design conditions is trained. Then, the neural network model is integrated with Monte Carlo simulation technique in order to calculate probability of failure for the breakwater. The proposed technique is compared with conventional approach using empirical formula.

Clustering In Tied Mixture HMM Using Homogeneous Centroid Neural Network (Homogeneous Centroid Neural Network에 의한 Tied Mixture HMM의 군집화)

  • Park Dong-Chul;Kim Woo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.853-858
    • /
    • 2006
  • TMHMM(Tied Mixture Hidden Markov Model) is an important approach to reduce the number of free parameters in speech recognition. However, this model suffers from a degradation in recognition accuracy due to its GPDF (Gaussian Probability Density Function) clustering error. This paper proposes a clustering algorithm, called HCNN(Homogeneous Centroid Neural network), to cluster acoustic feature vectors in TMHMM. Moreover, the HCNN uses the heterogeneous distance measure to allocate more code vectors in the heterogeneous areas where probability densities of different states overlap each other. When applied to Korean digit isolated word recognition, the HCNN reduces the error rate by 9.39% over CNN clustering, and 14.63% over the traditional K-means clustering.

Deep Neural Network-based Jellyfish Distribution Recognition System Using a UAV (무인기를 이용한 심층 신경망 기반 해파리 분포 인식 시스템)

  • Koo, Jungmo;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.432-440
    • /
    • 2017
  • In this paper, we propose a jellyfish distribution recognition and monitoring system using a UAV (unmanned aerial vehicle). The UAV was designed to satisfy the requirements for flight in ocean environment. The target jellyfish, Aurelia aurita, is recognized through convolutional neural network and its distribution is calculated. The modified deep neural network architecture has been developed to have reliable recognition accuracy and fast operation speed. Recognition speed is about 400 times faster than GoogLeNet by using a lightweight network architecture. We also introduce the method for selecting candidates to be used as inputs to the proposed network. The recognition accuracy of the jellyfish is improved by removing the probability value of the meaningless class among the probability vectors of the evaluated input image and re-evaluating it by normalization. The jellyfish distribution is calculated based on the unit jellyfish image recognized. The distribution level is defined by using the novelty concept of the distribution map buffer.

Application of Statistical Models for Default Probability of Loans in Mortgage Companies

  • Jung, Jin-Whan
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.605-616
    • /
    • 2000
  • Three primary interests frequently raised by mortgage companies are introduced and the corresponding statistical approaches for the default probability in mortgage companies are examined. Statistical models considered in this paper are time series, logistic regression, decision tree, neural network, and discrete time models. Usage of the models is illustrated using an artificially modified data set and the corresponding models are evaluated in appropriate manners.

  • PDF