• Title/Summary/Keyword: Probabilistic risk analysis

Search Result 295, Processing Time 0.025 seconds

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : A General Framework for Uncertainty and Variability Analysis of Health Risk in Life Cycle Assessment (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part I : 전과정평가에 있어 확률론적 위해도 분석기법 적용방안에 관한 연구)

  • Choi, Kwang-Soo;Park, Jae-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.185-202
    • /
    • 2000
  • Uncertainty and variability in Life Cycle Assessment(LCA) have been significant key issues in LCA methodology with techniques in other research area such as social and political science. Variability is understood as stemming from inherent variations in the real world, while uncertainty comes from inaccurate measurements, lack of data, model assumptions, etc. Related articles in this issues were reviewed for classification, distinguish and elaboration of probabilistic/stochastic health risk analysis application in LCA. Concept of focal zone, streamlining technique, scenario modelling and Monte Carlo/Latin Hypercube risk analysis were applied to the uncertainty/variability analysis of health risk in LCA. These results show that this general framework of multi-disciplinary methodology between probabilistic health risk assessment and LCA was of benefit to decision making process by suppling information about input/output data sensitivity, health effect priority and health risk distribution. There should be further research needs for case study using this methodology.

  • PDF

Study of Explanatory Power of Deterministic Risk Assessment's Probability through Uncertainty Intervals in Probabilistic Risk Assessment (고장률의 불확실구간을 고려한 빈도구간과 결정론적 빈도의 설명력 연구)

  • Man Hyeong Han;Young Woo Chon;Yong Woo Hwang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.75-83
    • /
    • 2024
  • Accurately assessing and managing risks in any endeavor is crucial. Risk assessment in engineering translates the abstract concept of risk into actionable strategies for systematic risk management. However, risk validation is met with significant skepticism, particularly concerning the uncertainty of probability. This study aims to address the aforementioned uncertainty in a multitude of ways. Firstly, instead of relying on deterministic probability, it acknowledges uncertainty and presents a probabilistic interval. Secondly, considering the uncertainty interval highlighted in OREDA, it delineates the bounds of the probabilistic interval. Lastly, it investigates how much explanatory power deterministic probability has within the defined probabilistic interval. By utilizing fault tree analysis (FTA) and integrating confidence intervals, a probabilistic risk assessment was conducted to scrutinize the explanatory power of deterministic probability. In this context, explanatory power signifies the proportion of probability within the probabilistic risk assessment interval that lies below the deterministic probability. Research results reveal that at a 90% confidence interval, the explanatory power of deterministic probability decreases to 73%. Additionally, it was confirmed that explanatory power reached 100% only with a probability application 36.9 times higher.

A Concept of Probabilistic Maintenance Cost Analysis Considering Risk Factors of Aged Multi-Family Housing (노후 공동주택의 위험요인을 고려한 확률적 유지관리비 분석 개념)

  • Park, Moon-Sun;Won, Seo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.246-247
    • /
    • 2019
  • This study was conducted to provide useful information to enable planned repair and cost planning during the operation and maintenance phase of aged multi-family housing. For this purpose, The concept of probabilistic maintenance cost analysis considering the risk factors of the aged multi-family housing is presented in the following six steps. 1. Risk factor investigation and analysis 2. Classification and deriving of maintenance cost 3. Investigation and deriving cost maintenance cost of old apartment house 4. Analysis of expert questionnaire 5. Analysis of Monte -Carlo simulation 6. Probabilistic maintenance cost Deriving the result. This study has limitations that need to be verified by applying actual data.

  • PDF

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : Life Cycle Assessment for Environmental Load of Chemical Products using Probabilistic Health Risk Analysis : A Case Study (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part II : 화학제품의 환경부하 전과정평가에 있어 건강영향분석 모의사례연구)

  • Park, Jae-Sung;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as $1.72E-4{\pm}1.2E+0$(production worker; case A), $9.62E-5{\pm}1.44E-5$(manger; case B), $6.90E-5{\pm}1.16E+0$(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.

  • PDF

RELIABILITY ANALYSIS OF DIGITAL SYSTEMS IN A PROBABILISTIC RISK ANALYSIS FOR NUCLEAR POWER PLANTS

  • Authen, Stefan;Holmberg, Jan-Erik
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.471-482
    • /
    • 2012
  • To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. The Probabilistic Risk Analysis (PRA) is a tool which can reveal shortcomings of the NPP design in general and PRA analysts have not had sufficient guiding principles in modelling particular digital components malfunctions. Currently digital I&C systems are mostly analyzed simply and conventionally in PRA, based on failure mode and effects analysis and fault tree modelling. More dynamic approaches are still in the trial stage and can be difficult to apply in full scale PRA-models. As basic events CPU failures, application software failures and common cause failures (CCF) between identical components are modelled.The primary goal is to model dependencies. However, it is not clear which failure modes or system parts CCF:s should be postulated for. A clear distinction can be made between the treatment of protection and control systems. There is a general consensus that protection systems shall be included in PRA, while control systems can be treated in a limited manner. OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group, called DIGREL, to develop taxonomy of failure modes of digital components for the purposes of PRA. The taxonomy is aimed to be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Quantitative Hazard Analysis of Information Systems Using Probabilistic Risk Analysis Method

  • Lee, Young-Jai;Kim, Tae-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.3
    • /
    • pp.59-71
    • /
    • 2009
  • Hazard analysis identifies probability to hazard occurrence and its potential impact on business processes operated in organizations. This paper illustrates a quantitative approach of hazard analysis of information systems by measuring the degree of hazard to information systems using probabilistic risk analysis and activity based costing technique. Specifically the research model projects probability of occurrence by PRA and economic loss by ABC under each identified hazard. To verify the model, each computerized subsystem which is called a business process and hazards occurred on information systems are gathered through one private organization. The loss impact of a hazard occurrence is produced by multiplying probability by the economic loss.

  • PDF

Reliability and Risk Assessment of Reclaimed Soil (매립지반의 액상화 신뢰성 및 위험도 평가)

  • Yi Jin-Hak;Kwon O-Soon;Park Woo-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.473-480
    • /
    • 2006
  • Liquefaction of soil foundation is one of the major seismic damage types of infrastructures. In this paper, deterministic and probabilistic approaches for the evaluation of liquefaction potential are briefly summarized and the risk assessment method is newly proposed using seismic fragility and seismic hazard curves. Currently the deterministic approach is widely used to evaluate the liquefaction potential in Korea. However, the there are a certain degree of uncertainties in the soil properties such as elastic modulus and resistant capacity, therefore the probabilistic approach is more promising. Two types of probabilistic approach are introduced including (1) failure probability for a given design earthquake and (2) the seismic risk of liquefaction of soil for a given service life. The results from different methods show a similar trend, and the liquefaction potential can be more quantitatively evaluated using risk analysis method.

  • PDF

Probabilistic Risk Assessment for Construction Projects (건설공사의 확률적 위험도분석평가)

  • 조효남;임종권;김광섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.24-31
    • /
    • 1997
  • Recently, in Korea, demand for establishment of systematic risk assessment techniques for construction projects has increased, especially after the large construction failures occurred during construction such as New Haengju Bridge construction projects, subway construction projects, gas explosion accidents etc. Most of existing risk analysis modeling techniques such as Event Tree Analysis and Fault Tree Analysis may not be available for realistic risk assessment of construction projects because it is very complex and difficult to estimate occurrence frequency and failure probability precisely due to a lack of data related to the various risks inherent in construction projects like natural disasters, financial and economic risks, political risks, environmental risks as well as design and construction-related risks. Therefor the main objective of this paper is to suggest systematic probabilistic risk assessment model and demonstrate an approach for probabilistic risk assessment using advanced Event Tree Analysis introducing Fuzzy set theory concepts. It may be stated that the Fuzzy Event Tree AnaIysis may be very usefu1 for the systematic and rational risk assessment for real constructions problems because the approach is able to effectively deal with all the related construction risks in terms of the linguistic variables that incorporate systematically expert's experiences and subjective judgement.

  • PDF

Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides

  • Ghosh, Pratanu;Konecny, Petr;Lehner, Petr;Tikalsky, Paul J.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.305-313
    • /
    • 2017
  • A robust finite element based reinforced concrete bridge deck corrosion initiation model is applied for time-dependent probabilistic sensitivity analysis. The model is focused on uncertainties in the governing parameters that include variation of high performance concrete (HPC) diffusion coefficients, concrete cover depth, surface chloride concentration, holidays in reinforcements, coatings and critical chloride threshold level in several steel reinforcements. The corrosion initiation risk is expressed in the form of probability over intended life span of the bridge deck. Conducted study shows the time-dependent sensitivity analysis to evaluate the significance of governing parameters on chloride ingress rate, various steel reinforcement protection and the corrosion initiation likelihood. Results from this probabilistic analysis provide better insight into the effect of input parameters variation on the estimate of the corrosion initiation risk for the design of concrete structures in harsh chloride environments.