• 제목/요약/키워드: Probabilistic Neural Networks (PNN)

검색결과 11건 처리시간 0.036초

확률신경망을 이용한 방파제 피복재 설계 (Estimation of the Stability Number of Breakwater Armor Blocks Using Probabilistic Neural Networks)

  • 김두기;김동현;장성규;장상길
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.70-76
    • /
    • 2006
  • A Probabilistic neural network (PNN) technique for predicting the stability number for the armor blocks of breakwaters is presented. A PNN is prepared using the experimental data of van der Meer and is then compared with the empirical formula and previous artificial neural network (ANN) model. This comparison shows that a PNN can effectively predict the stability numbers in spite of data complexity, incompleteness, and incoherence, and can be an effective tool for the designers of rubble mound breakwaters to support their decision process and to improve design efficiency.

확률신경회로망에 의한 냉연 강판 표면결함의 분류 (Classification of Surface Defects on Cold Rolled Strips by Probabilistic Neural Networks)

  • 송성진;김학준;최세호;이종학
    • 비파괴검사학회지
    • /
    • 제17권3호
    • /
    • pp.162-173
    • /
    • 1997
  • 최근 산업 발전에 따라 철강 제품의 수요 증가와 함께 품질의 고급화에 대한 요구도 점차 증가하고 있는데, 이러한 수요자의 요구에 부응하기 위해 철강업계는 냉연 강판 표면결함검출기(surface defect detector; SDD)를 도입 운용하고 있다. 그러나 현재 국내 철강 제조업체들이 보유하고 있는 상용 SDD는 결함의 검출에는 매우 효율적이지만 결함의 분류에는 아직 만족할만한 성능을 보여주지 못하고 있다. 그 이유는 SDD가 결함 분류를 위해 채택한 분류표분류기(classification table; CT)는 시험 표본의 모든 특징값들이 분류표의 범위 내에 있을 때만 결함의 분류를 정확히 수행하기 때문에 결함 분류 정확도가 낮을 뿐 아니라, 분류 법칙의 설정을 작업자의 수작업에 의존하고 있어 현장 적용을 더욱 어렵게 하고 있다. 이러한 단점을 극복하기 위해 본 연구에서 학습 표본으로부터 확률밀도함수를 추정하고 여기에서 분류 법칙을 자동적으로 결정하는 방법을 제시하였고, 강화분류표분류기(enhanced classification table; ECT)와 확률신경회로망분류기(probabilistic neural network; PNN)를 새롭게 제안하여 이들 분류기를 실제적인 문제에 적용하였다. 그 결과 ECT와 PNN 모두 결함 분류 성능을 획기적으로 높일 수 있는 좋은 방법이며, 특히 PNN은 아주 구별하기 어려운 결함도 구별해내는 능력이 있을 뿐 아니라, 병렬 처리 능력을 가지고 있기 때문에 다량의 데이터를 실시간으로 처리해야 하는 경우에 적용할 수 있는 매우 효율적인 분류기임을 확인하였다.

  • PDF

심전도 신호를 이용한 심장 질환 진단에 관한 연구 (A Study of ECG Based Cardiac Diseases Diagnoses)

  • 김현동;윤재복;김현동;김태선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.328-330
    • /
    • 2004
  • In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.

  • PDF

강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용 (Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures)

  • 박승희;이종재;윤정방;노용래
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.53-62
    • /
    • 2005
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용 (Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures)

  • 박승희;이종재;윤정방;노용래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.625-632
    • /
    • 2004
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

  • PDF

Application of a Hybrid System of Probabilistic Neural Networks and Artificial Bee Colony Algorithm for Prediction of Brand Share in the Market

  • Shahrabi, Jamal;Khameneh, Sara Mottaghi
    • Industrial Engineering and Management Systems
    • /
    • 제15권4호
    • /
    • pp.324-334
    • /
    • 2016
  • Manufacturers and retailers are interested in how prices, promotions, discounts and other marketing variables can influence the sales and shares of the products that they produce or sell. Therefore, many models have been developed to predict the brand share. Since the customer choice models are usually used to predict the market share, here we use hybrid model of Probabilistic Neural Network and Artificial Bee colony Algorithm (PNN-ABC) that we have introduced to model consumer choice to predict brand share. The evaluation process is carried out using the same data set that we have used for modeling individual consumer choices in a retail coffee market. Then, to show good performance of this model we compare it with Artificial Neural Network with one hidden layer, Artificial Neural Network with two hidden layer, Artificial Neural Network trained with genetic algorithms (ANN-GA), and Probabilistic Neural Network. The evaluated results show that the offered model is outperforms better than other previous models, so it can be use as an effective tool for modeling consumer choice and predicting market share.

영역 기반 영상 검색을 위한 다중클래스 피드백 알고리즘 (Multi-class Feedback Algorithm for Region-based Image Retrieval)

  • 고병철;남재열
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.383-392
    • /
    • 2006
  • 본 논문에서는 영역기반 영상검색의 성능 향상을 위한 피드백 알고리즘으로 다중 클래스를 갖는 확률적 신경망(Probabilistic Neural Networks)을 이용한 방법론을 제안하고 이를 영역기반 영상 검색 시스템인 FRIP(Finding Regions In the Pictures) 시스템에 적용하였다. 본 논문에서 제안하는 피드백 알고리즘은 특정 벡터가 독립적이라는 가정을 할 필요가 없으며 보다 상세한 분류를 위해 추가적인 클래스들을 추가할 수 있도록 허용하고 있다. 또한 단지 4개 층(layer)만을 가지고 있음으로 학습을 위한 계산시간이 적게 든다는 장점이 있다. 추가적으로 다음단계에서의 성능 향상을 위해 분류 단계에서 사용자의 이전 피드백 행동을 모두 히스토리(history)로 모두 기억시켜 놓고 다음 단계를 위한 가중치 학습을 위해 사용하도록 한다. 히스토리를 사용함으로써 제안하는 알고리즘은 사용자의 주관적 의도를 보다 정확하게 파악 할 수 있을 뿐만 아니라 학습을 위해 이전 단계만을 사용 했을 때 발생할 수 있는 성능 감소를 막을 수 있다. 본 논문에서는 Corel-photo CD에서 3000장의 자연 영상을 무작위로 추출하여 기존의 방법론들과 제안하는 방법론의 성능을 측정하여 본 논문에서 제안하는 방법론이 성능이 우수함을 증명하였다.

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF