• 제목/요약/키워드: Probabilistic Models

검색결과 462건 처리시간 0.022초

APCC 다중 모형 자료 기반 계절 내 월 기온 및 강수 변동 예측성 (Prediction Skill of Intraseasonal Monthly Temperature and Precipitation Variations for APCC Multi-Models)

  • 송찬영;안중배
    • 대기
    • /
    • 제30권4호
    • /
    • pp.405-420
    • /
    • 2020
  • In this study, we investigate the predictability of intraseasonal monthly temperature and precipitation variations using hindcast datasets from eight global circulation models participating in the operational multi-model ensemble (MME) seasonal prediction system of the Asia-Pacific Economic Cooperation Climate Center for the 1983~2010 period. These intraseasonal monthly variations are defined by categorical deterministic analysis. The monthly temperature and precipitation are categorized into above normal (AN), near normal (NN), and below normal (BN) based on the σ-value ± 0.43 after standardization. The nine patterns of intraseasonal monthly variation are defined by considering the changing pattern of the monthly categories for the three consecutive months. A deterministic and a probabilistic analysis are used to define intraseasonal monthly variation for the multi-model consisting of numerous ensemble members. The results show that a pattern (pattern 7), which has the same monthly categories in three consecutive months, is the most frequently occurring pattern in observation regardless of the seasons and variables. Meanwhile, the patterns (e.g., patterns 8 and 9) that have consistently increasing or decreasing trends in three consecutive months, such as BN-NN-AN or AN-NN-BN, occur rarely in observation. The MME and eight individual models generally capture pattern 7 well but rarely capture patterns 8 and 9.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Stochastic identification of masonry parameters in 2D finite elements continuum models

  • Giada Bartolini;Anna De Falco;Filippo Landi
    • Coupled systems mechanics
    • /
    • 제12권5호
    • /
    • pp.429-444
    • /
    • 2023
  • The comprehension and structural modeling of masonry constructions is fundamental to safeguard the integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a great challenge because of still demanding computational efforts, constraints in performing destructive or semi-destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol' indices pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian approach to the inverse problem based on the available measurements obtained from the experimental load-displacement curves provided by shear compression in-situ tests.

일본 서부 단층 지진원을 고려한 확률론적 지진해일 재해도 분석의 파고 변수 도출 (Estimation of Wave Parameters for Probabilistic Tsunami Hazard Analysis Considering the Fault Sources in the Western Part of Japan)

  • 이현미;김민규;신동훈;최인길
    • 한국지진공학회논문집
    • /
    • 제18권3호
    • /
    • pp.151-160
    • /
    • 2014
  • Probabilistic tsunami hazard analysis (PTHA) is based on the approach of probabilistic seismic hazard analysis (PSHA) which is performed using various seismotectonic models and ground-motion prediction equations. The major difference between PTHA and PSHA is that PTHA requires the wave parameters of tsunami. The wave parameters can be estimated from tsunami propagation analysis. Therefore, a tsunami simulation analysis was conducted for the purpose of evaluating the wave parameters required for the PTHA of Uljin nuclear power plant (NPP) site. The tsunamigenic fault sources in the western part of Japan were chosen for the analysis. The wave heights for 80 rupture scenarios were numerically simulated. The synthetic tsunami waveforms were obtained around the Uljin NPP site. The results show that the wave heights are closely related with the location of the fault sources and the associated potential earthquake magnitudes. These wave parameters can be used as input data for the future PTHA study of the Uljin NPP site.

바이오 셀 정보 추출을 위한 확률 모델 (Probabilistic model for bio-cells information extraction)

  • 석경휴;박성호
    • 한국전자통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.649-656
    • /
    • 2011
  • 본 논문에서는 유전자 생물학 분야의 여러 각도로 세포 간 네트워크를 분석하고, 유전자 생물학 분야를 정보공학 네트워크에 응용하여 수치학적인 표현 모델로 분석 연구하고자 한다. 확률적 그래프 모델을 사용하여 데이터 네트워크로부터 생물학적 통찰력을 확률적 함수적으로 응용해, 복잡한 세포 간 네트워크 보다 단순한 하부모델로 구성하여 유전자 베이스네트워크 논리를 유전자 표현 레벨로 나타낸다. 유전자 데이터로부터 확률적 그래프 모델들을 분석하여 유전자 표현 데이터를 정보공학 네트워크 모델의 방법으로 확장 추론한다.

Nonlinear finite element analysis of reinforced concrete corbels at both deterministic and probabilistic levels

  • Strauss, Alfred;Mordini, Andrea;Bergmeister, Konrad
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.123-144
    • /
    • 2006
  • Reinforced concrete corbels are structural elements widely used in practical engineering. The complex response of these elements is described in design codes in a simplified manner. These formulations are not sufficient to show the real behavior, which, however, is an essential prerequisite for the manufacturing of numerous elements. Therefore, a deterministic and probabilistic study has been performed, which is described in this contribution. Real complex structures have been modeled by means of the finite element method supported primarily by experimental works. The main objective of this study was the detection of uncertainties effects and safety margins not captured by traditional codes. This aim could be fulfilled by statistical considerations applied to the investigated structures. The probabilistic study is based on advanced Monte Carlo simulation techniques and sophisticated nonlinear finite element formulations.

Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations

  • Song, Long L.;Guo, Tong;Shi, Xin
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.641-652
    • /
    • 2019
  • This paper investigates the effect of aftershocks on the seismic performance of self-centering (SC) prestressed concrete frames using the probabilistic seismic demand analysis methodology. For this purpose, a 4-story SC concrete frame and a conventional reinforced concrete (RC) frame are designed and numerically analyzed through nonlinear dynamic analyses based on a set of as-recorded mainshock-aftershock seismic sequences. The peak and residual story drifts are selected as the demand parameters. The probabilistic seismic demand models of the SC and RC frames are compared, and the SC frame is found to have less dispersion of peak and residual story drifts. The results of drift demand hazard analyses reveal that the SC frame experiences lower peak story drift hazards and significantly reduced residual story drift hazards than the RC frame when subjected to the mainshocks only or the mainshock-aftershock sequences, which demonstrates the advantages of the SC frame over the RC frame. For both the SC and RC frames, the influence of as-recorded aftershocks on the drift demand hazards is small. It is shown that artificial aftershocks can produce notably increased drift demand hazards of the RC frame, while the incremental effect of artificial aftershocks on the drift demand hazards of the SC frame is much smaller. It is also found that aftershock polarity does not influence the drift demand hazards of both the SC and RC frames.

Probabilistic and spectral modelling of dynamic wind effects of quayside container cranes

  • Su, Ning;Peng, Shitao;Hong, Ningning;Wu, Xiaotong;Chen, Yunyue
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.405-421
    • /
    • 2020
  • Quayside container cranes are important delivery machineries located in the most frontiers of container terminals, where strong wind attacks happen occasionally. Since the previous researches on quayside container cranes mainly focused on the mean wind load and static response characteristics, the fluctuating wind load and dynamic response characteristics require further investigations. In the present study, the aerodynamic wind loads on quayside container cranes were obtained from wind tunnel tests. The probabilistic and spectral models of the fluctuating aerodynamic loads were established. Then the joint probabilistic distributions of dynamic wind-induced responses were derived theoretically based on a series of Gaussian and independent assumption of resonant components. Finally, the results were validated by time domain analysis using wind tunnel data. It is concluded that the assumptions are acceptable. And the presented approach can estimate peak dynamic sliding force, overturning moments and leg uplifts of quayside container cranes effectively and efficiently.

RELIABILITY ANALYSIS OF DIGITAL SYSTEMS IN A PROBABILISTIC RISK ANALYSIS FOR NUCLEAR POWER PLANTS

  • Authen, Stefan;Holmberg, Jan-Erik
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.471-482
    • /
    • 2012
  • To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. The Probabilistic Risk Analysis (PRA) is a tool which can reveal shortcomings of the NPP design in general and PRA analysts have not had sufficient guiding principles in modelling particular digital components malfunctions. Currently digital I&C systems are mostly analyzed simply and conventionally in PRA, based on failure mode and effects analysis and fault tree modelling. More dynamic approaches are still in the trial stage and can be difficult to apply in full scale PRA-models. As basic events CPU failures, application software failures and common cause failures (CCF) between identical components are modelled.The primary goal is to model dependencies. However, it is not clear which failure modes or system parts CCF:s should be postulated for. A clear distinction can be made between the treatment of protection and control systems. There is a general consensus that protection systems shall be included in PRA, while control systems can be treated in a limited manner. OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group, called DIGREL, to develop taxonomy of failure modes of digital components for the purposes of PRA. The taxonomy is aimed to be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies.

Technical note: Estimation of Korean industry-average initiating event frequencies for use in probabilistic safety assessment

  • Kim, Dong-San;Park, Jin Hee;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.211-221
    • /
    • 2020
  • One fundamental element of probabilistic safety assessment (PSA) is the initiating event (IE) analysis. Since IE frequencies can change over time, time-trend analysis is required to obtain optimized IE frequencies. Accordingly, such time-trend analyses have been employed to estimate industry-average IE frequencies for use in the PSAs of U.S. nuclear power plants (NPPs); existing PSAs of Korean NPPs, however, neglect such analysis in the estimation of IE frequencies. This article therefore provides the method for and results of estimating Korean industry-average IE frequencies using time-trend analysis. It also examines the effects of the IE frequencies obtained from this study on risk insights by applying them to recently updated internal events Level 1 PSA models (at-power and shutdown) for an OPR-1000 plant. As a result, at-power core damage frequency decreased while shutdown core damage frequency increased, with the related contributions from each IE category changing accordingly. These results imply that the incorporation of time-trend analysis leads to different IE frequencies and resulting risk insights. The IE frequency distributions presented in this study can be used in future PSA updates for Korean NPPs, and should be further updated themselves by adding more recent data.