• 제목/요약/키워드: Probabilistic Inference Model

검색결과 48건 처리시간 0.03초

로짓모형을 이용한 질적 종속변수의 분석 (Application of Logit Model in Qualitative Dependent Variables)

  • 이길순;유완
    • 가정과삶의질연구
    • /
    • 제10권1호통권19호
    • /
    • pp.131-138
    • /
    • 1992
  • Regression analysis has become a standard statistical tool in the behavioral science. Because of its widespread popularity. regression has been often misused. Such is the case when the dependent variable is a qualitative measure rather than a continuous, interval measure. Regression estimates with a qualitative dependent variable does not meet the assumptions underlying regression. It can lead to serious errors in the standard statistical inference. Logit model is recommended as alternatives to the regression model for qualitative dependent variables. Researchers can employ this model to measure the relationship between independent variables and qualitative dependent variables without assuming that logit model was derived from probabilistic choice theory. Coefficients in logit model are typically estimated by the method of Maximum Likelihood Estimation in contrast to ordinary regression model which estimated by the method of Least Squares Estimation. Goodness of fit in logit model is based on the likelihood ratio statistics and the t-statistics is used for testing the null hypothesis.

  • PDF

생성 모형을 사용한 순항 항공기 향후 속도 예측 및 추론 (En-route Ground Speed Prediction and Posterior Inference Using Generative Model)

  • 백현진;이금진
    • 한국항공운항학회지
    • /
    • 제27권4호
    • /
    • pp.27-36
    • /
    • 2019
  • An accurate trajectory prediction is a key to the safe and efficient operations of aircraft. One way to improve trajectory prediction accuracy is to develop a model for aircraft ground speed prediction. This paper proposes a generative model for posterior aircraft ground speed prediction. The proposed method fits the Gaussian Mixture Model(GMM) to historical data of aircraft speed, and then the model is used to generates probabilistic speed profile of the aircraft. The performances of the proposed method are demonstrated with real traffic data in Incheon Flight Information Region(FIR).

Who knows what and to what extent - modeling the knowledge of the narrative agent

  • Hochang Kwon
    • 트랜스-
    • /
    • 제14권
    • /
    • pp.65-92
    • /
    • 2023
  • The knowledge of the narrative agent not only constitutes the content and meaning of the narrative itself, but is also closely related to the emotional response of the recipient. Also, the disparity of knowledge between narrative agents is an important factor in making a narrative richer and more interesting. But It tends to be treated as a sub-topic of narration theory or genre/style studies rather than an independent subject of narrative studies or criticism. In this paper, I propose a model that can systematically and quantitatively analyze the knowledge of narrative agents. The proposed model consists of the knowledge structure that represents a narrative, the knowledge state that expresses the knowledge of narrative agent as a degree of belief, and the knowledge flow that means changes in the knowledge state according to the development of events. In addition, the formal notation of the knowledge structure and a probabilistic inference model that could obtain the state of knowledge were proposed, and the knowledge structure and knowledge flow were analyzed by applying the model to the actual narrative. It is expected that the proposed model will be of practical help in the creation and evaluation of narratives.

다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출 (The probabilistic estimation of inundation region using a multiple logistic regression analysis)

  • 정민규;김진국;오랑치맥 솜야;권현한
    • 한국수자원학회논문집
    • /
    • 제53권2호
    • /
    • pp.121-129
    • /
    • 2020
  • 도시화로 인한 불투수층 증가와 하천 주변 개발은 홍수 시 위험에 노출되는 재해요인의 증가뿐 아니라 피해의 파급을 발생시켜 홍수 관리 측면에서 어려움을 낳는다. 홍수 방재대책을 위해서는 도시지역에 분포하는 다양한 지표면 공간특성을 반영하여 침수가 예상되는 지역에 대한 파악이 우선시되어야 한다. 본 연구에서는 도시하천의 홍수 위험지역을 대상으로 확률적 홍수위험 평가가 수행되었다. 홍수와 관련된 지형적 영향요인인 고도, 경사, 유출곡선지수, 하천까지 거리를 예측변수로 하여 하천 주변 침수 예상지역을 설명하기 위해 모형의 학습데이터로 100년 빈도 홍수위험 지도가 사용되었다. 연구 대상 지역은 격자로 변환하여 Bayesian Logistic 회귀분석을 수행하여 각 격자별로 홍수영향요인이 침수 여부를 설명하는 모형을 구축하였다. 최종적으로 모형을 통해 대상 지역 전체에 대하여 침수위험도를 확률적으로 제시하였다.

보행자 기반의 변분 베이지안 감시 카메라 자가 보정 (Pedestrian-Based Variational Bayesian Self-Calibration of Surveillance Cameras)

  • 임종빈
    • 한국정보통신학회논문지
    • /
    • 제23권9호
    • /
    • pp.1060-1069
    • /
    • 2019
  • 보행자 기반의 카메라 자가 보정 방법들은 복잡한 보정 장치나 절차가 필요하지 않기 때문에 비디오 감시 시스템에 적합하다. 하지만 임의 보행자를 보정 대상으로 사용하는 경우 보행자들의 키를 모르기 때문에 보정 정확도가 저하될 수 있다. 본 논문은 실제 감시 환경에서 이 문제를 해결하기 위한 베이지안 보정 방법을 제안한다. 제안하는 방법에서는 감시 지역 사람들의 키에 대한 통계가 있다고 가정하고, 발-머리 호몰로지(foot-head homology)를 사용하여, 발과 머리의 좌표와 보행자 키의 불확실성을 모두 고려하는 확률 모델을 구성한다. 이 확률 모델을 직접 푸는 것은 난해하므로, 본 연구에서는 근사적 방법인 변분 베이지안 추론(variational Bayesian inference)을 사용한다. 따라서, 이를 통해 관측된 보행자들의 키를 추정함과 동시에 정확한 카메라 파라미터를 구할 수 있다. 다양한 실험을 통해 제안된 방법이 노이즈에 강하며, 보정에 대한 정확한 신뢰도를 제공함을 보였다.

A Methodology for Estimating the Uncertainty in Model Parameters Applying the Robust Bayesian Inferences

  • Kim, Joo Yeon;Lee, Seung Hyun;Park, Tai Jin
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.149-154
    • /
    • 2016
  • Background: Any real application of Bayesian inference must acknowledge that both prior distribution and likelihood function have only been specified as more or less convenient approximations to whatever the analyzer's true belief might be. If the inferences from the Bayesian analysis are to be trusted, it is important to determine that they are robust to such variations of prior and likelihood as might also be consistent with the analyzer's stated beliefs. Materials and Methods: The robust Bayesian inference was applied to atmospheric dispersion assessment using Gaussian plume model. The scopes of contaminations were specified as the uncertainties of distribution type and parametric variability. The probabilistic distribution of model parameters was assumed to be contaminated as the symmetric unimodal and unimodal distributions. The distribution of the sector-averaged relative concentrations was then calculated by applying the contaminated priors to the model parameters. Results and Discussion: The sector-averaged concentrations for stability class were compared by applying the symmetric unimodal and unimodal priors, respectively, as the contaminated one based on the class of ${\varepsilon}$-contamination. Though ${\varepsilon}$ was assumed as 10%, the medians reflecting the symmetric unimodal priors were nearly approximated within 10% compared with ones reflecting the plausible ones. However, the medians reflecting the unimodal priors were approximated within 20% for a few downwind distances compared with ones reflecting the plausible ones. Conclusion: The robustness has been answered by estimating how the results of the Bayesian inferences are robust to reasonable variations of the plausible priors. From these robust inferences, it is reasonable to apply the symmetric unimodal priors for analyzing the robustness of the Bayesian inferences.

힘 확률 대비 이론에 기반을 둔 인과 추론 연구 (Causal reasoning studies with a focus on the Power Probabilistic Contrast Theory)

  • 박주용
    • 인지과학
    • /
    • 제27권4호
    • /
    • pp.541-572
    • /
    • 2016
  • 인과 추론은 심리학에서는 물론 최근 베이스 접근법을 취하는 인지과학자들에 의해서도 활발히 연구되고 있다. 본 연구는 인과추론에 대한 대표적 심리학 이론인 힘-확률대비이론(a power probabilistic contrast theory of causality)을 중심으로 인과 추론의 최근 동향을 개관하고자 한다. 힘-확률대비이론에서는, 원인은 결과를 일으키거나 억제하는 힘(power)인데, 이 힘은 특정한 조건하에서 통계적 상관을 통해 파악될 수 있다고 가정한다. 본 논문에서는 이 이론에 대한 초기의 경험적 지지 증거를 먼저 살펴본 다음, 베이스 접근에 기반을 둔 이론과의 쟁점을 명확히 하고, 원인은 맥락에 무관하게 동일하게 작동한다는 인과적 불변성 가정(causal invariance hypothesis)을 중심으로 한 보다 최근의 연구 결과를 소개하고자 한다. 이 연구들은 종래의 통계적 접근법으로는 잘 설명되지 않는 결과를 제시함으로써, 철학, 통계학, 그리고 인공 지능 등과 같은 인접 분야에 인과성에 대한 힘 이론을 진지하게 고려할 것을 촉구하고 있다.

모바일 환경에서의 상황인식 기반 사용자 감성인지를 통한 개인화 서비스 (Personalized Service Based on Context Awareness through User Emotional Perception in Mobile Environment)

  • 권일경;이상용
    • 디지털융복합연구
    • /
    • 제10권2호
    • /
    • pp.287-292
    • /
    • 2012
  • 본 논문에서는 모바일환경에서의 사용자 감정인지를 통한 개인화 서비스 지원에 필요한 위치기반 센싱 데이터의 전처리 기법과 사용자 감정 데이터의 구축 및 전처리를 위한 V-A 감정 모델에서의 감정 데이터 전처리 기법에 대하여 연구한다. 이를 위하여 그래뉼러 컨텍스트 트리 및 스트링 매칭 기반의 감정 패턴 매칭 기법을 사용한다. 또한 상황 인지를 통한 개인화 서비스를 위해 확률 기반 추론을 이용한 상황 인식 및 개인화 서비스 추천 기법에 대하여 연구한다.

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.