• Title/Summary/Keyword: Probabilistic Fatigue Life

Search Result 67, Processing Time 0.02 seconds

Analysis of Probability and Extended Life Cycle of Strengthened Bridge Deck (성능향상된 교량 바닥판의 확률론적 해석 및 수명연장 분석)

  • Sim, Jong-Sung;Oh, Hong-Seob;Choi, Jang-Whan;Kim, Eon-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.635-642
    • /
    • 2003
  • Although the strengthening effect of deteriorated concrete bridge decks has been studied by various authors, most researches are focused on the experimental works on the pulsating loading in laboratory in spite of deterioration of deck caused by moving vehicle loads. In this research, a theoretical live load model that was proposed to reflect an effect of moving vehicle loads is formulated from a statistical approach on the measurement of real traffic loads for various time periodsin Korea. Fatigue life and strengthening effect of strengthened bridge decks strengthened with either Carbon Fiber Sheet or Grid typed Carbon Fiber Polymer Plastic by the probabilistic and the reliability analyses are assessed. As a results, secondary bridge deck (DB18) strengthened with FRP ensures a sufficient fatigue resistance against the increased traffic loads as well as load carrying capacity in life cycle.

An Study on the Establishment of the Accelerated Durability Test Condition of the Spur Gear (평기어에 대한 가속내구시험의 조건설정에 관한 연구)

  • Kim Chul-Su;Kim Jung-Kyu;Kwon Yeo-Hyoun;An Seung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.14-19
    • /
    • 2005
  • An accelerated life test (ALT) is used to estimate the reliability of machinery parts and system with a design specification as soon as possible. However, accelerated life test results with simple and severe conditions are inconsistent with physical phenomena in real service condition. Therefore, to assure the safety of the machinery system, it is necessary to establish the appropriate test condition of the ALT of machinery element. In this study, fatigue analysis of the spur gear as a part of the gear box system in the rolling stock was performed. Moreover, based on the results, appropriate test condition of the ALT is developed using both the probabilistic model of the linear damage rule and accelerated durability analysis simulation.

  • PDF

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

Generation of Time Series Data from Octave Bandwidth SPL of Acoustic Loading Using Interpolation Method (보간법을 이용한 옥타브 밴드폭 음향 하중 SPL의 시계열 데이터 생성)

  • Go, Eun-Su;Kim, In-Gul;Jeon, Minhyeok;Cho, Hyun-Jun;Park, Jae-Sang;Kim, Min-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an high supersonic/hypersonic aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by high power engine noise and jet flow noise, which can cause sonic fatigue damage. In order to predict the fatigue life of the skin, the octave bandwidth SPL should be calculated as narrow bandwidth PSD or acoustic load history using interpolation method. In this paper, a method of converting the octave bandwidth SPL acoustic load into a narrow bandwidth PSD and reconstructed acoustic load history was investigated. The octave bandwidth SPL was converted to the narrow bandwidth PSD using various interpolation methods such as flat, log and linear scale, and the probabilistic characteristics and fatigue damage results were compared. It was found that average error of fatigue damage index by the log scale interpolation method was relatively small among three methods.

A new Bayesian approach to derive Paris' law parameters from S-N curve data

  • Prabhu, Sreehari Ramachandra;Lee, Young-Joo;Park, Yeun Chul
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.361-369
    • /
    • 2019
  • The determination of Paris' law parameters based on crack growth experiments is an important procedure of fatigue life assessment. However, it is a challenging task because it involves various sources of uncertainty. This paper proposes a novel probabilistic method, termed the S-N Paris law (SNPL) method, to quantify the uncertainties underlying the Paris' law parameters, by finding the best estimates of their statistical parameters from the S-N curve data using a Bayesian approach. Through a series of steps, the SNPL method determines the statistical parameters (e.g., mean and standard deviation) of the Paris' law parameters that will maximize the likelihood of observing the given S-N data. Because the SNPL method is based on a Bayesian approach, the prior statistical parameters can be updated when additional S-N test data are available. Thus, information on the Paris' law parameters can be obtained with greater reliability. The proposed method is tested by applying it to S-N curves of 40H steel and 20G steel, and the corresponding analysis results are in good agreement with the experimental observations.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Optimization for Inspecdtion Planning of Ship Structures Considering Corrosion Effects (부식효과를 고려한 선체구조 검사계획안의 최적화)

  • Sung-Chan Kim;Jang-Ho Yoon;Yukio Fujimoto
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.137-146
    • /
    • 1999
  • Inspection becomes to be important in the safety of structure and economical viewpoint, because structural damage accompanies lots of economical cost and social problems. Especially ship structure is composed of a lot of members and it is impossible to inspect all members continuously. The purpose of this paper is to get optimal inspection plan containing inspection time and method. Crack is one of major modes on the structural failure and can lead to collapse of structure. In this paper, the deteriorating process, which contains inspection to detect the crack before the propagation to large crack, is idealized as Markov chain model. Genetic algorithm is also used to accomplish the optimization of inspection plan. Especially, the probabilistic characteristics of cracks are changed, because ship is operating in corrosive environments and the scantling of structural members is reduced due to corrosion. Non-stationary Markov chain model is used to represent the process of corrosion in structural members. In this paper, the characteristics of indivisual inspection plan are compared by numerical examples for the change of corrosion rate, the cost due to scheduled system down and target failure probability. From the numerical example, it can be seen that the improvement of fatigue life for the members with short fatigue life is the most effective way in order to reduce total maintenance cost.

  • PDF