• Title/Summary/Keyword: Pro-eutectoid Ferrite

Search Result 6, Processing Time 0.02 seconds

Effects of Alloying Elements and Pro-eutectoid Ferrite on Mechanicl Properties in Medium Carbon Steels (중탄소강에서 합금원소 및 초석 페라이트가 기계적성질에 미치는 영향)

  • 심혜정;송형락;남원종
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.350-358
    • /
    • 2004
  • The effects of alloying elements on microstructural features and mechanical properties in 0.55%C medium carbon steels were investigated. The samples were austenitized at 105$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. The addition of Cr resulted in the decrease of the volume fraction of pro-eutectoid ferrite and interlamellar spacing in pearlite and the increase of strength. However, the addition of B caused the increase of the volume fraction of pro-eutectoid ferrite. Reduction of area and Charpy impact values were influenced by the combined effect of microstructural features, such as the volume fraction of pro-eutectoid ferrite, interlamellar spacing and the thickness of lamellar cementite in pearlite.

Effect of Pro-eutectoid Ferrite and Cementite-spheroidization on the Sliding Wear Resistance of Carbon Steels (탄소강의 초석페라이트와 시멘타이트 구상화가 미끄럼마멸 거동에 미치는 영향 분석)

  • Hur, H.L.;Gwon, H.;Kim, M.G.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.345-350
    • /
    • 2014
  • The current study elucidates the effects of cementite spheroidization and pro-eutectoid ferrite on the sliding wear resistance in medium carbon (0.45wt%C) and high carbon (1wt%C) steels. Both steels were initially heat treated to obtain a fully pearlite or ferrite + pearlite microstructure. Spheroidizing heat treatments were performed on both steels to spheroidize the pearlitic cementite. Sliding wear tests were conducted using a pin-on-disk wear tester with the steel specimens as the disk and an alumina ($Al_2O_3$) ball as the pin. The sliding wear tests were carried out at room temperature in air with humidity of $40{\pm}2%$. Adapted sliding distance and applied load was 300m and 100N, respectively. Sliding speed was 0.1m/s and the wear-track radius was 9 mm. Worn surfaces and cross-sections of the wear track were examined using an SEM. Micro Vickers hardness of the wear-track subsurface was measured as a function of depth from the worn surface. Hardness and sliding-wear resistance of both steel decreased with increased spheroidization of the cementite. The decrease was more significant in the fully pearlitic steel (1wt%C steel). The steel with the pro-eutectoid ferrite showed relatively higher wear resistance compared to the spheroidized pearlitic steel.

Comparison of Tensile and Impact Properties of Hypo-Eutectoid Steels Containing Micro-Alloying Elements (미량합금 원소가 첨가된 아공석강의 인장 및 충격 특성 비교)

  • Lee, Seung-Yong;Cho, Yun;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In this study tensile and impact properties of three hypo-eutectoid steels containing different micro-alloying elements were investigated in terms of microstructural factors such as pro-eutectoid ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness. Yield point phenomenon appeared in all the steel specimens during tensile testing, and ultimate tensile stress was mainly dependent on pearlite fraction. On the other hand, the refinement of austenite grain size caused by the addition of micro-alloying elements resulted in the increment of ferrite volume fraction and carbon contents in pearlite because of the refinement of pro-eutectoid ferrite grain size. As a result, cementite thickness in pearlite increased and had an effect on deteriorating the low temperature impact toughness.

Microstructural Factors on Ductility in Steels containing Pearlite (펄라이트 함유강에서 연성에 영향을 미치는 미세조직 인자)

  • 심혜정;송형락;남원종
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.415-421
    • /
    • 2004
  • The effect of transformation temperature on microstructural features and their effects on ductility in 0.55%C steels were investigated, compared with in 0.82%C eutectoid steel. The samples were austenitized at 100$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. It was found that reduction of area(RA) increased with increasing transformation temperature and then, decreased after reaching its maximum value in steels containing pro-eutectoid ferrite less than 6%. The thickness of lamellar cementite was found to be the main factor controlling RA. Additionally, the presence of cementite thickness for the maximum ductility in all the tested steels was observed as about 0.015${\mu}{\textrm}{m}$ for tested steels.

The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng (API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향)

  • Kim, Sungwook;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.

Effect of Austenitizing Temperature on the Hardenability and Tensile Properties of Boron Steels (오스테나이트화 온도에 따른 보론강의 경화능과 인장 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.497-502
    • /
    • 2015
  • The hardenability of boron steel specimens with different molybdenum and chromium contents was investigated using dilatometry and microstructural observations, and then was quantitatively measured at a critical cooling rate corresponding to 90 % martensite hardness obtained from a hardness distribution plotted as a function of cooling rate. Based on the results, the effect of an austenitizing temperature on the hardenability and tensile properties was discussed in terms of segregation and precipitation behavior of boron atoms at austenite grain boundaries. The molybdenum addition completely suppressed the formation of pro-eutectoid ferrite even at the slowest cooling rate of $0.2^{\circ}C/s$, while the chromium addition did at the cooling rates above $3^{\circ}C/s$. On the other hand, the hardenability of the molybdenum-added boron steel specimens decreased with an increasing austenitizing temperature. This is associated with the preferred precipitation of boron atoms since a considerable number of boron atoms could be concentrated along austenite grain boundaries by a non-equilibrium segregation mechanism. The secondary ion mass spectroscopy results showed that boron atoms were mostly segregated at austenite grain boundaries without noticeable precipitation at higher austenitization temperatures, while they formed as precipitates at lower austenitization temperatures, particularly in the molybdenum-added boron steel specimens.