• Title/Summary/Keyword: Private LTE Network

Search Result 6, Processing Time 0.02 seconds

A DDoS Attack Detection of private mobile network using Time Series Analysis (시계열 분석을 적용한 사설 모바일 네트워크의 DDoS 공격 탐지)

  • Kim, Dae Hwan;Lee, Soo Jin;Pyo, Sang Ho
    • Convergence Security Journal
    • /
    • v.16 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • Many companies and organizations are building a mobile office environment using the LTE network, the national disaster network and Air Force LTE network are built for public safety and national defense. However the recent threats on information security have been evolving from information leakage to DDoS attacks to neutralize the service. Especially, the type of device such as Smart phones, smart pad, tablet PC, and the numbers are growing exponentially and As performance of mobile device and speed of line develop rapidly, DDoS attacks in the mobile environment is becoming a threat. So far, universal countermeasure to DDoS attacks has been interception the network and server step, Yet problem regarding DDoS attack traffic on mobile network and expenditure of network resources still remains. Therefore, this paper analyzes the traffic type distributed in the private mobile network such as the National Disaster Network, and Air Force LTE network in order to preemptively detect DDoS attacks on terminal step. However, as direct analysis on traffic distributed in the National Disaster Network, and Air Force LTE network is restricted, transmission traffics in Minecraft and uploading video file upload which exhibit similar traffic information are analyzed in time series, thereby verifing its effectiveness through establishment of DDoS attacks standard in mobile network and application that detects and protects DDoS attacks

A Design of MILENAGE Algorithm-based Mutual Authentication Protocol for The Protection of Initial Identifier in LTE (LTE 환경에서 초기 식별자를 보호하기 위한 MILENAGE 알고리즘 기반의 상호인증)

  • Yoo, Jae-hoe;Kim, Hyung-uk;Jung, Yong-hoon
    • Journal of Venture Innovation
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • In LTE environment, which is 4th generation mobile communication systems, there is concern about private information exposure by transmitting initial identifier in plain text. This paper suggest mutual authentication protocol, which uses one-time password utilizing challenge-response and AES-based Milenage key generation algorithm, as solution for safe initial identification communication, preventing unique identification information leaking. Milenage key generation algorithm has been used in LTE Security protocol for generating Cipher key, Integrity key, Message Authentication Code. Performance analysis evaluates the suitability of LTE Security protocol and LTE network by comparing LTE Security protocol with proposed protocol about algorithm operation count and Latency.Thus, this paper figures out initial identification communication's weak points of currently used LTE security protocol and complements in accordance with traditional protocol. So, it can be applied for traditional LTE communication on account of providing additional confidentiality to initial identifier.

The Mobile Digital ID Wallet based on LTE/SAE for 4G Networks (4G 네트워크를 위한 LTE/SAE 기반의 모바일 전자ID지갑)

  • Jung, Yun-Seon;Lim, Sun-Hee;Yi, Ok-Yeon;Lee, Sang-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.764-777
    • /
    • 2008
  • In 4G environments, which is the next generation technology for mobile network, it is forecasted that the wireless Internet using a mobile devices such as a mobile phone, PDA will increase because of expansion of Internet and integration of heterogeneous networks. Therefore, we need a Digital ID management technology that can prevent illegal uses and manage private information efficiently in wired and wireless environments. In this paper, we analyze various Digital ID management technologies, and then define requirements of user-centric Digital ID management technology. In addition, we newly propose the authentication mechanism for mobile applications in LTE/SAE network. Finally, we propose the mobile Digital ID Wallet mechanism suitable for 4G environments.

Vulnerability Analysis on the Mobile Core Network using OpenAirInterface (OpenAirInterface를 통한 모바일 코어네트워크 보안위협 분석)

  • Oh, In Su;Park, Jun Young;Jung, Eun Seon;Yim, Kang Bin
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.71-79
    • /
    • 2020
  • Mobile network is used by many users worldwide for diverse services, including phone-call, messaging and data transfer over the Internet. However, this network may experience massive damage if it is exposed to cyber-attacks or denial-of-service attacks via wireless communication interference. Because the mobile network is also used as an emergency network in cases of disaster, evaluation or verification for security and safety is necessary as an important nation-wide asset. However, it is not easy to analyze the mobile core network because it's built and serviced by private service providers, exclusively operated, and there is even no separate network for testing. Thus, in this paper, a virtual mobile network is built using OpenAirInterface, which is implemented based on 3GPP standards and provided as an open source software, and the structure and protocols of the core network are analyzed. In particular, the S1AP protocol messages captured on S1-MME, the interface between the base station eNodeB and the mobility manager MME, are analyzed to identify potential security threats by evaluating the effect of the messages sent from the user terminal UE to the mobile core network.

A Study on the Improvement of Collection, Management and Sharing of Maritime Traffic Information (해상교통정보의 수집, 관리 및 공유 개선방안에 관한 연구)

  • Shin, Gil-Ho;Song, Chae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.515-524
    • /
    • 2022
  • To effectively collect, manage, and share the maritime traffic information, it is necessary to identify the technology trends concerning this particular information and analyze its current status and problems. Therefore, this study observes the domestic and foreign technology trends involving maritime traffic information while analyzing and summarizing the current status and problems in collecting, managing, and sharing it. According to the data analysis, the problems in the collecting stage are difficulties in collecting visual information from long-distance radars, CCTVs, and cameras in areas outside the LTE network coverage. Notably, this explains the challenges in detecting smuggling ships entering the territorial waters through the exclusive economic zone (EEZ) in the early stage. The problems in the management stage include difficult reductions and expansions of maritime traffic information caused by the lack of flexibility in storage spaces mostly constructed by the maritime transportation system. Additionally, it is challenging to deal with system failure with system redundancy and backup as a countermeasure. Furthermore, the problems in the sharing stage show that it is difficult to share information with external operating organizations since the internal network is mainly used to share maritime transportation information. If at all through the government cloud via platforms such as LRIT and SASS, it often fails to effectively provide various S/W applications that help use maritime big data. Therefore, it is suggested that collecting equipment such as unmanned aerial vehicles and satellites should be constructed to expand collecting areas in the collecting stage. In the management and sharing stages, the introduction and construction of private clouds are suggested, considering the operational administration and information disclosure of each maritime transportation system. Through these efforts, an enhancement of the expertise and security of clouds is expected.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.