• Title/Summary/Keyword: Private Investment

Search Result 561, Processing Time 0.028 seconds

Evaluating Functional Efficiency of Existing Forest Roads (개설효과(開設效果)에 의(依)한 임도(林道)의 유형구분(類型區分) - 기설임도(旣設林道)의 분석(分析)을 중심(中心)으로 -)

  • Jeon, Kyung Soo;Lee, Jong Lak;Ryu, Taek Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.211-220
    • /
    • 1994
  • The critical need of forest road for enchanting the additional values of various forest products, in addition, giving more recreational opportunity to citizen, has been recognized. In this study the present author aimed to ascertain the most effective construction working plan of forest road being tit to Korean geographic condition. To execute this research program, four locations in national forest of Kangweon-do district and other four locations in private forest in Chollabuk-do district both where forest roads have previously been constructed were selected to analyze the effectiveness basing upon the various factors separately or in combination. The results are summarized as follows ; 1. The investment efficiency in forest road construction showed to increase in the area where terrain factors and district social factors rate is high, and to decrease in the area where forest status factors and forest road structure factors rate is high. So in future the Forest Resource Development Model of forest road should take more importance particularly on those area having terrain factor ratio is low. The extractable value of constructed forest road based on forest status factors rate is expected to increase in case of high considerably. 2. To construct of forest road for increasing multiple use of forests, forest road should be construct with priority on area where obtained total score by evaluation factors is high. And these evaluation factors should take possible determine the position of forest road construction. 3. The following five types of forest road basing upon function performance are suggested with regard to the place where road is constructed. (1) Forest Utilization Model ; where forest status factors and forest road structure factors rate are over 60%. (2) Forest Resource Development Model ; where terrain factors, forest status factors, forest road structure factors and district social factors rate are less than 60%. (3) Community Development Model ; where terrain factors, forest road structure factors and district social factors rate are over 60% but forest status factors rate are less than 60%. (4) Recreation and Health Model ; where terrain factors, forest status factors, forest road structure factors and district social factors rate are over 60%. (5) Multiple Use Model ; where both forest status factors and district social factors rate are over 60%.

  • PDF

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

A Study on the Status of Startups and Their Nurturing Plans: Focusing on Startups in Seongnam City (스타트업 실태 및 육성방안에 관한 연구: 성남시 스타트업을 중심으로)

  • Han, Kyu-Dong;Jeon, Byung-Hoon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.5
    • /
    • pp.67-80
    • /
    • 2022
  • This study was conducted to derive policy measures such as fostering and supporting by examining the actual conditions of domestic startups. The subject of this study was the start-ups located in Seongnam-si, where Pangyo Techno Valley, which is the highest-level innovation cluster in Korea and is evaluated as a start-up mecca. Startups were defined as startups under 7 years old based on new technologies such as IT, BT, and CT, and the subjects of the study were selected. This can be seen as a step forward from previous research in that it embodies the concept of a startup that was previously abstract in a quantitatively measurable way. As a result of the analysis, about 94% of startups are distributed in the so-called "Death Valley" growth stage, and startups above scale-up, which means full-scale growth beyond BEP, account for about 6%. appeared to be occupied. He cited the problem of start-up funds as the biggest difficulty in the early stages of startups, and cited the loan evaluation method that prioritizes sales or collateral in raising funds as the biggest problem. In addition, start-ups rated the access to private investment capital such as VC, AC, and angel investors at a low level compared to policy funds, which are public funds. Most startups showed a lot of interest in overseas expansion, and they chose matching overseas investors such as overseas VCs as the biggest support for overseas expansion. The overall competitiveness in the overseas market was 49.6 points, which is less than 50 points out of 100, indicating that the overall competitiveness was somewhat inferior. It was analyzed that public support and investment in overseas sales channels (sales channels, distribution networks, etc.) should be prioritized along with enhancement of technological competitiveness in order for domestic startups to increase their competitiveness in overseas markets as well as in the domestic market.

Structural Adjustment of Domestic Firms in the Era of Market Liberalization (시장개방(市場開放)과 국내기업(國內企業)의 구조조정(構造調整))

  • Seong, So-mi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.91-116
    • /
    • 1991
  • Market liberalization progressing simultaneously with high and rapidly rising domestic wages has created an adverse business environment for domestic firms. Korean firms are losing their international competitiveness in comparison to firms from LDC(Less Developed Countries) in low-tech industries. In high-tech industries, domestic firms without government protection (which is impossible due to the liberalization policy and the current international status of the Korean economy) are in a disadvantaged position relative to firms from advanced countries. This paper examines the division of roles between the private sector and the government in order to achieve a successful structural adjustment, which has become the impending industrial policy issue caused by high domestic wages, on the one hand, and the opening of domestic markets, on the other. The micro foundation of the economy-wide structural adjustment is actually the restructuring of business portfolios at the firm level. The firm-level business restructuring means that firms in low-value-added businesses or with declining market niches establish new major businesses in higher value-added segments or growing market niches. The adjustment of the business structure at the firm level can only be accomplished by accumulating firm-specific managerial assets necessary to establish a new business structure. This can be done through learning-by-doing in the whole system of management, including research and development, manufacturing, and marketing. Therefore, the voluntary cooperation among the people in the company is essential for making the cost of the learning process lower than that at the competing companies. Hence, firms that attempt to restructure their major businesses need to induce corporate-wide participation through innovations in organization and management, encourage innovative corporate culture, and maintain cooperative labor unions. Policy discussions on structural adjustments usually regard firms as a black box behind a few macro variables. But in reality, firm activities are not flows of materials but relationships among human resources. The growth potential of companies are embodied in the human resources of the firm; the balance of interest among stockholders, managers, and workers of the company' brings the accumulation of the company's core competencies. Therefore, policymakers and economists shoud change their old concept of the firm as a technological black box which produces a marketable commodities. Firms should be regarded as coalitions of interest groups such as stockholders, managers, and workers. Consequently the discussion on the structural adjustment both at the macroeconomic level and the firm level should be based on this new paradigm of understanding firms. The government's role in reducing the cost of structural adjustment and supporting should the creation of new industries emphasize the following: First, government must promote the competition in domestic markets by revising laws related to antitrust policy, bankruptcy, and the promotion of small and medium-sized companies. General consensus on the limitations of government intervention and the merit of deregulation should be sought among policymakers and people in the business world. In the age of internationalization, nation-specific competitive advantages cannot be exclusively in favor of domestic firms. The international competitiveness of a domestic firm derives from the firm-specific core competencies which can be accumulated by internal investment and organization of the firm. Second, government must build up a solid infrastructure of production factors including capital, technology, manpower, and information. Structural adjustment often entails bankruptcies and partial waste of resources. However, it is desirable for the government not to try to sustain marginal businesses, but to support the diversification or restructuring of businesses by assisting in factor creation. Institutional support for venture businesses needs to be improved, especially in the financing system since many investment projects in venture businesses are highly risky, even though they are very promising. The proportion of low-value added production processes and declining industries should be reduced by promoting foreign direct investment and factory automation. Moreover, one cannot over-emphasize the importance of future-oriented labor policies to be based on the new paradigm of understanding firm activities. The old laws and instititutions related to labor unions need to be reformed. Third, government must improve the regimes related to money, banking, and the tax system to change business practices dependent on government protection or undesirable in view of the evolution of the Korean economy as a whole. To prevent rational business decisions from contradicting to the interest of the economy as a whole, government should influence the business environment, not the business itself.

  • PDF

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.

Jeju Shinyang Fishing Port Remodeling Plan Utilizing Marine Tourism Resources (해양관광자원을 활용한 제주 신양항 리모델링 계획)

  • Kim, Yelim;Sung, Jong-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.52-69
    • /
    • 2016
  • The fishing port was once the foothold of production as well as the stronghold of communities but with the declining of the fishing industry, ports became abandoned space. Jeju Special Self-Governing Province has continued its effort to vitalize marine tourism since 2010. Shinyang Port in particular is designated as a Prearranged Marina Port Development Zone, and planning for the Jeju Ocean Marina City project is underway. Nevertheless, fishing port remodeling projects implemented on Jeju so far have focused only on civil engineering such as renovating old facilities. In addition, most Marina Port Development Projects have been irrelevant to local communities. Leading projects by the local government mostly suffer from a lack of funding, which results in the renovation of old facilities and improper maintenance, while private sector investment projects do not lead to benefit sharing with the community. Shinyang Port, also renovated in 2008, ended up with outer breakwater extension construction that neither solved the fundamental problem of the site nor gave benefits to residents. To arrange a way to solve problems for civil engineering focused development project, improper maintenance, and benefit sharing with community, first, this study proposes a development plan that connects with the outlying areas near the ports. The plan reflects existing topography, Jeju traditional stonewalls, narrow paths on the master plan and programs by reading the regional context. In this way, this paper suggests a space development plan reflecting the local landscape and characteristic factors. Second, it satisfies various needs by using existing and new Marine Tourism Resources. Third, it examines sustainable operation and management measures through residents' participation. The proposal is significant in two key ways: it is a fresh attempt at connecting the fishing port with its outlying areas from a landscape perspective; and it considers environmental, social, economic issues, and suggests participation for local communities. Thus, the model can be used in future fishing-port remodeling plans for revitalizing unused space, including invaluable traditional landscapes, and for boosting the marine-leisure industry.

A Study on the Integrated Utilization of Nationally-Supported Research Vessels Using Cost-Benefit Analysis (비용-편익 분석을 통한 국가 해양 연구·조사선의 최적 통합활용 방안 연구)

  • Park, Cheong Kee;Park, Se Hun;Park, Seong Wook;Lee, Gun Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.719-730
    • /
    • 2017
  • Recently, oceanic research has been carried out investigating global scientific interests and the territorial management of national marine jurisdictional waters, including exclusive economic zones (EEZ) and the open seas. To meet the needs of ocean researchers pursuing these - objectives, acquiring advanced research infrastructure, including research vessels, large facilities, and equipment, is a top priority in ocean science. However, ocean science is a similar to space science, and securing resources and state-of-the-art technology can be expensive. Faced with these challenges, our study focused on establishing a strategy for the efficient operation and management of research vessels, attempting to establish benchmarks from foreign examples that can be adapted to suit the target context. The results of this study provide ways to identify operating systems that could increase the efficiency of joint-use research vessels. The different systems examined in this study included a joint-use committee-based management system (JCMS, Type 1), private enterprise entrusted operating system (PEOS, Type 2), institutional investment operating system (IIOS, Type 3), and commissioned executive operating system (CEOS, Type 4). The efficiencies of JCMS, PEOS, IIOS and CEOS were 9.17, 5.82, 11.2 and -1.72 %, respectively. Given the total costs involved, the most affordable operating system was IIOS. JCMS was the most cost-effective system based on a quantitative cost-benefit analysis, but IIOS also had an acceptable cost-benefit balance. An operational committee would be required and regulations and guidelines shoulde be established to employ, JCMS, while a strategy to yield independent revenue would be needed to utilize an IIOS system.

Development of Smart Digital Agriculture Technology for Food Crop Production in Korea-The Path Forward Based on Expert Feedback (식량작물 생산에 대한 스마트디지털 농업기술의 발전 방향 - 전문가 설문조사 연구)

  • Song, Ki Eun;Jung, Jae Gyeong;Cho, Seungho;Kim, Jae Yoon;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Building self-sustainable rural infrastructure and environment through smart digital agriculture technology innovation is one of the major goals of the Korean agricultural administration as a part of the nation's 4th industry revolution. To identify areas for improving and effectively investing in the acceleration of rural development, 207 experts in the areas of crop science and smart digital agriculture technology were interviewed for their opinions and suggestions on 22 questions designed to recognize fundamental agricultural issues to be addressed and solutions to advance technology innovation and rural development. Majority of the participants expected smart digital agriculture technologies to resolve major agricultural issues and help build a better rural environment. To overcome technology gaps and resolve issues more effectively, further investment in training new technology experts and building stronger agricultural technology infrastructure is urgent, and persistent and systematic support from agricultural administration appears to be the key for accelerating the process. While the leading global groups of both public and private sectors have advanced their technologies beyond the field application stage, most of the Korean technologies remain at the early pilot stage. Aging population and lack of labor in rural areas, unknown future climate change, and challenges in sustainable rural development are expected to be resolved by smart digital agriculture technologies. Technological innovations by research institutes should be promptly deployed in the crop production field, and farm training systemically organized by local technology centers can accelerate farming revolution. Standardization of equipment and data systems is another key to the success of digitalization of food crop production and food supply chains nationwide.

Estimating Optimal Timber Production for the Economic and Public Functions of the National Forests in South Korea (국유림의 경제적·공익적 기능을 고려한 적정 목재생산량 추정)

  • Yujin Jeong;Younghwan Kim;Yoonseong Chang;Dooahn Kwak;Gihyun Park;Dayoung Kim;Hyungsik Jeong;Hee Han
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.561-573
    • /
    • 2023
  • National forests have an advantage over private forests in terms of higher investment in capital, technology, and labor, allowing for more intensive management. As such, national forests are expected to serve not only as a strategic reserve of forest resources to address the long-term demand for timber but also to stably perform various essential forest functions demanded by society. However, most forest stands in the current national forests belong to the fourth age class or above, indicating an imminent timber harvesting period amid an imbalanced age class structure. Therefore, if timber harvesting is not conducted based on systematic management planning, it will become difficult to ensure the continuity of the national forests' diverse functions. This study was conducted to determine the optimal volume of timber production in the national forests to improve the age-class structure while sustainably maintaining their economic and public functions. To achieve this, the study first identified areas within the national forests suitable for timber production. Subsequently, a forest management planning model was developed using multi-objective linear programming, taking into account both the national forests' economic role and their public benefits. The findings suggest that approximately 488,000 hectares within the national forests are suitable for timber production. By focusing on management of these areas, it is possible to not only improve the age-class distribution but also to sustainably uphold the forests' public benefits. Furthermore, the potential volume of timber production from the national forests for the next 100 years would be around 2 million m3 per year, constituting about 44% of the annual domestic timber supply.

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF