• Title/Summary/Keyword: Privacy Hash-chain

Search Result 27, Processing Time 0.031 seconds

Hash-Chain based Micropayment without Disclosing Privacy Information (사생활 정보가 노출되지 않는 해쉬체인 기반 소액지불시스템)

  • Jeong Yoon-Su;Baek Seung-Ho;Hwang Yoon-Cheol;Lee Sang-Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.499-506
    • /
    • 2005
  • A hash chain is a structure organized by hash function with high speed in computation. Systems using the hash chain are using extensively in various cryptography applications such as one-time passwords, server-supported signatures and micropayments. However, the most hash chain based on the system using pre-paid method provides anonymity but has the problem to increase payment cost. In this paper, we propose a new hash chain based on the micropayment system to keep user anonymity safe through blind signature in the withdrawal process of the root value without disclosing privacy information, and to improve efficiency by using secret key instead of public key in the system without the role of certificate.

A Scheme of Computational Time Reduction on Back-End Server Using Computational Grid (계산 그리드를 이용한 백엔드 서버의 계산시간 단축 방안)

  • Hong, Seong-Pyo;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2695-2701
    • /
    • 2012
  • We need privacy protection protocols, that satisfy three essential security requirements; confidentiality, indistinguishability and forward security, in order to protect user's privacy in RFID system. The hash-chain based protocol that Ohkubo et. al proposed is the most secure protocol, that satisfies all of the essential security requirements, among existing protocols. But, this protocol has a disadvantage that it takes very long time to identify a tag in the back-end server. In this paper, we propose a scheme to keep security just as it is and to reduce computation time for identifying a tag in back-end server. The proposed scheme shows the results that the identification time in back-end server is reduced considerably compared to the hash-chain based protocol.

Implementation of Tag Identification Process Model with Scalability for RFID Protecting Privacy on the Grid Environment (그리드환경에서 RFID 프라이버시 보호를 위한 확장성있는 태그판별처리 모델 구현)

  • Shin, Myeong Sook;Lee, Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • Recently RFID system has been adopted in various fields rapidly. However, we ought to solve the problem of privacy invasion that can be occurred by obtaining information of RFID Tag without any permission for popularization of RFID system To solve the problems, it is Ohkubo et al.'s Hash-Chain Scheme which is the safest method. However, this method has a problem that requesting lots of computing process because of increasing numbers of Tag. Therefore, in this paper we apply the previous method into the grid environment by analyzing Hash-Chain scheme in order to reduce processing time when Tags are identified. We'll implement the process by offering Tag Identification Process Model to divide SPs evenly by node.

  • PDF

Reducing Process Time for RFID Tag Identification on the Grid Environment (그리드 환경에서 RFID 태그 판별 시간 절감을 위한 태그 판별 처리)

  • Shin, Myeong-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1049-1056
    • /
    • 2010
  • Recently RFID system has been adopted in various fields rapidly. However, we should solve the problem of privacy invasion that can be occurred by obtaining information of RFID Tag without any permission for popularization of RFID system. To solve these problems, There is the Ohkubo et al.'s Hash-Chain Scheme which is the safest method. However, this method has a problem that requesting lots of computing process because of creasing numbers of Tag. Therefore We, suggest SP-Division algorithm satisfied with all necessary security of Privacy Protection Scheme and decreased in Tag Identification Time in this paper. And this paper implemented it in time standard finding the first key among the data devided into each nodes. The length of Hash-Chain holds 1000, and the total number of SPs increases 1000, 2000, 3000, and 4000. Comparing tag identification time by the total number of SPs and the number of Nodes with single node, extending the number of nodes to 1, 2, 3 and 4, when the number of nodes is 2, 40% of Performance, when the number of nodes is 3, 56%, and when the number of nodes is 4, 71% is improved.

A Study on the Efficient RFID Tag Identification considering Performance Information of Individual Nodes in a Grid Environment (그리드 환경에서 노드별 성능정보를 고려한 효율적인 RFID 태그 판별에 관한 연구)

  • Shin, Myeong-Sook;Lee, Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.797-802
    • /
    • 2011
  • RFID is recognized to technically occupy important position in ubiquitous computing environment and expected to create new markets in a variety of fields from now on. In order to generalize RFID system, it is required to solve the problem of privacy invasion and expedite lots of tags We suggest efficient RFID Tag Identification to identify tags quickly on the satisfaction with 3 security requirements of privacy protection in this paper. This methods are transferred to Grid environment through parallel analysis of Hash-Chain, and we measure performance of each nodes under the Grid environment. Then, We'll suggest SP-Division Algorithm to identify tags with each nodes and implement it in a Grid environment.

Secure and Efficient Database Searching in RFID Systems using Tag-Grouping Based on Hash-Chain (RFID 시스템에서 Hash-Chain기반 Tag-Grouping을 이용한 안전하고 효율적인 데이터베이스 검색)

  • Lee, Byeung-Ju;Song, Chang-Woo;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.9-17
    • /
    • 2009
  • RFID (Radio Frequency Identification) is a next generation technology that will replace barcode. RFID can identify an object by reading ID inside a RFID tag using radio frequency. However, because a RFID tag replies its unique ID to the request of any reader through wireless communication, it is vulnerable to attacks on security or privacy through wiretapping or an illegal reader's request. The RFID authentication protocol has been studied actively in order to solve security and privacy problems, and is used also in tag search. Recently, as the number of tags is increasing in RFTD systems and the cost of data collection is also rising, the importance of effective tag search is increasing. This study proposed an efficient search method that solved through ta9 group the problem of large volume of database computation in Miyako Ohkubo's hash chain mechanism, which meets requirements for security and privacy protection. When we searched first the group of tags with access rate of 5 or higher in a database with 100,000 records, search time decreased by around 30%.

Improving Scalability using Parallelism in RFID Privacy Protection (RFID 프라이버시 보호에서 병행성을 이용한 확장성 개선)

  • Shin Myeong-Sook;Lee Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1428-1434
    • /
    • 2006
  • In this paper, we propose the scheme solving privacy infringement in RFID systems with improving the scalability of back-end server. With RFID/USN becoming important subject, many approaches have been proposed and applied. However, limits of RFID, low computation power and storage, make the protection of privacy difficult. The Hash Chain scheme has been known as one guaranteeing forward security, confidentiality and indistinguishability. In spite of that, it is a problem that requires much of computation to identify tags in Back-End server. In this paper, we introduce an efficient key search method, the Hellman Method, to reduce computing complexity in Back-End server. Hellman Method algorism progresses pre-computation and (re)search. In this paper, after applying Hellman Method to Hash chain theory, We compared Preservation and key reference to analyze and apply to parallel With guaranteeing requistes of security for existing privacy protecting Comparing key reference reduced computation time of server to reduce computation complex from O(m) to $O(\frac{m{^2/3}}{w})$ than the existing form.

A Lightweight Mutual Authentication Protocol based Hash Chain for Low-power RFID Systems (저전력 RFID 시스템을 위한 해시 체인 기반의 경량화 된 상호 인증 프로토콜)

  • Lee, Gi-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.560-566
    • /
    • 2009
  • A low-power Radio Frequency Identification (RFID) system is an auto-identification technology that reads and writes an information of things without physical contacts using radio frequency. It is unescapable against unlawful modification, eavesdropping, tracking, or privacy of individuals because RFID systems use the radio frequency and RFID tags. Therefore we create a key using hash chain between database and tag and this process can prevent above attacks. Also we support the efficiency of proposed protocol using hash function to abate computation.

RFID Tag Identification with Scalability Using SP-Division Algorithm on the Grid Environment (그리드 환경에서 SP분할 알고리즘을 이용한 확장성 있는 RFID 태그 판별)

  • Shin, Myeong-Sook;Ahn, Seong-Soo;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2105-2112
    • /
    • 2009
  • Recently RFID system has been adopted in various fields rapidly. However, we ought to solve the problem of privacy invasion that can be occurred by obtaining information of RFID Tag without any permission for popularization of RFID system To solve the problems, it is Ohkubo et al.'s Hash-Chain Scheme which is the safest method. However, this method has a problem that requesting lots of computing process because of increasing numbers of Tag. Therefore, We suggest the way (process) satisfied with all necessary security of Privacy Protection Shreme and decreased in Tag Identification Time in this paper. First, We'll suggest the SP-Division Algorithm seperating SPs using the Performance Measurement consequence of each node after framing the program to create Hash-Chain Calculated table to get optimized performance because of character of the grid environment comprised of heterogeneous system. If we compare consequence fixed the number of nodes to 4 with a single node, equal partition, and SP partition, when the total number of SPs is 1000, 40%, 49%, when the total number of SPs is 2000, 42%, 51%, when the total number of SPs is 3000, 39%, 49%, and when the total number of SPs is 4000, 46%, 56% is improved.

An Efficient Micropayment System using a Session Key (세션키를 이용한 효율적 소액지불시스템)

  • Jeong Yoon Su;Baek Seung-Ho;Hwang Yoon Cheol;Oh Chung Shick;Lee Sang-ho
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.462-470
    • /
    • 2005
  • A hash chain is highly efficient and attractive structure to use in electronic cash. Previous systems using hash chain are used extensively in various cryptography applications such as one-time passwords, server-supported signatures and microments. However, The most hash chain based systems using fro-paid method provide anonymity but have the problem to increase payment cost. Therefore, in this paper, we propose a new hash chain based microment system which improves efficiency using session key and guarantees user anonymity through blind signature in the withdrawal process of the root value without disclosing privacy Information.