• Title/Summary/Keyword: Priority service networks

Search Result 168, Processing Time 0.03 seconds

Hierarchical Real-Time MAC Protocol for (m,k)-firm Stream in Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2010
  • In wireless sensor networks (WSNs), both efficient energy management and Quality of Service (QoS) are important issues for some applications. For creating robust networks, real-time services are usually employed to satisfy the QoS requirements. In this paper, we proposed a hierarchical real-time MAC (medium access control) protocol for (m,k)-firm constraint in wireless sensor networks shortly called HRTS-MAC. The proposed HRTS-MAC protocol is based on a dynamic priority assignment by (m,k)-firm constraint. In a tree structure topology, the scheduling algorithm assigns uniform transmitting opportunities to each node. The paper also provides experimental results and comparison of the proposed protocol with E_DBP scheduling algorithm.

Performance analysis of a loss priority control scheme in an input and output queueing ATM switch (입출력 단에 버퍼를 가지는 ATM 교환기의 손실우선순위 제어의 성능 분석)

  • 이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1148-1159
    • /
    • 1997
  • In the broadband integrated service digital networks (B-ISDN), ATM switches hould be abld to accommodate diverse types of applications ith different traffic characteristics and quality ddo services (QOS). Thus, in order to increase the utilization of switches and satisfy the QOS's of each traffic type, some types of priority control schemes are needed in ATM switches. In this paper, a nonblocking input and output queueing ATm switch with capacity C is considered in which two classes of traffics with different loss probability constraints are admitted. 'Partial push-out' algorithm is suggested as a loss priority control schemes, and the performance of this algorithm is analyzed when this is adopted in input buffers of the switch. The quque length distribution of input buffers and loss probabilities of each traffic are obtained using a matrix-geometric solution method. Numerical analysis and simulation indicate that the utilization of the switch with partial push-out algorithm satisfying the QOS's of each traffic is much higher than that of the switch without control. Also, the required buffer size is reduced while satisfying the same QOS's.

  • PDF

Enhancements of the Modified PCF in IEEE 802.11 WLANs

  • Kanjanavapastit Apichan;Landfeldt Bjorn
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.313-324
    • /
    • 2005
  • The success of the IEEE 802.11 standard has prompted research into efficiency of the different medium access methods and their support for different traffic types. A modified version of the point coordination function (PCF) called modified PCF has been introduced as a way to improve the efficiency over the standard method. It has been shown through a simulation study and a mathematical analysis that channel utilization can be much improved compared to the standard, in case there is no so-called hidden station problem. However, under the hidden station problem, the efficiency of the modified PCF would obviously decrease. In this paper, some enhancements of the modified PCF are introduced. Firstly, we propose a retransmission process to allow frames involved in collisions to be retransmitted. Then, we propose a collision resolution mechanism to reduce the frame collision probability due to the hidden station problem. In addition, we propose a priority scheme to support prioritization for different traffic types such as interactive voice and video, and real-time data traffic in the modified PCF. To prevent the starvation of one low priority traffic, minimum transmission period is also guaranteed to each traffic type via an admission control algorithm. We study the performance of the modified PCF under the hidden station problem and the performance of the modified PCF with priority scheme through simulations. To illustrate the efficiency of the priority scheme, we therefore compare its simulation results with those of some standardized protocols: The distributed coordination function (DCF), the enhanced distributed channel access (EDCA), the PCF, and our previously proposed protocol: The modified PCF without priority scheme. The simulation results show that the increment of delay in the network due to the hidden station problem can be reduced using the proposed collision resolution mechanism. In addition, in a given scenario the modified PCF with priority scheme can provide better quality of service (QoS) support to different traffic types and also support a higher number of data stations than the previous proposals.

Priority-Based Resource Allocation Algorithm for Virtual Network (가상 네트워크를 위한 우선순위 기반 자원 할당 알고리즘)

  • Kim, Hak-Suh;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.303-310
    • /
    • 2016
  • Due to the ossification of the Internet, it is difficult to accommodate variety services. One of the efficient solution to this problem is network virtualization. It allows multiple parallel virtual networks to run on the shared physical infrastructure. It needs new resource allocation mechanism to share efficient physical resources. In this paper, we present efficient bandwidth allocation algorithm for virtual network request with high service priority. Our proposed algorithm can withdraw allocated bandwidth from low-level priority virtual network and maintain low-level virtual network service. We evaluated the performance of our proposed algorithm using simulation and found the improvement of approximately 8% acceptance rate.

QoS Enhancement Scheme through Service Differentiation in IEEE 802.11e Wireless Networks (IEEE 802.11e 무선랜에서 서비스 차별화를 통한 QoS 향상 방법)

  • Kim, Sun-Myeng;Cho, Young-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.17-27
    • /
    • 2007
  • The enhanced distributed channel access (EDCA) of IEEE 802.11e has been standardized for supporting Quality of Service (QoS) in wireless LANs. In the EDCA, support of QoS can be achieved statistically by reducing the probability of medium access for lower priority traffics. In other words, it provides statistical channel access rather than deterministically prioritized access to high priority traffic. Therefore, lower priority traffics affect the performance of higher priority traffics. Consequently, at the high loads, the EDCA does not guarantee the QoS of multimedia applications such as voice and video even though it provides higher priority. In this paper, we propose a simple and effective scheme, called deterministic priority channel access (DPCA), for improving the QoS performance of the EDCA mechanism. In order to provide guaranteed priority channel access to multimedia applications, the proposed scheme uses a busy tone for limiting the transmissions of lower priority traffics when higher priority traffic has data packets to send. Performance of the proposed scheme is investigated by numerical analysis and simulation. Our results show that the proposed scheme outperforms the EDCA in terms of throughput, delay, jitter, and drop under a wide range of contention levels.

Priority Collision Resolution Algorithm on HFC Networks (우선 순위를 고려한 HFC 망의 충돌 해소 알고리즘)

  • 김변곤;박준성;정경택;전병실
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1252-1260
    • /
    • 1999
  • The HFC network has a architecture of a star topology in fiber optic trunks, and tree and branch topology is used in the part of coaxial cable. It is well known that the HFC upstream channel is noisy. Ingress, common mode distortion and impulse noise exist in the upstream channel. In order to provide Quality of Service(QoS) to users with real-time data such as voice, video and interactive services, the evolving IEEE 802.14 standard for HFC networks must include an effective priority scheme. The scheme separates and resolves collisions between stations in a priority order. It is important to simulate protocols under a practical environment. The proposed algorithm in this paper is simulated with the assumption that the collision detector made certain mistake due to noises. Simulation results show that the proposed algorithm is more efficient than existing tree-based algorithm under practical environment.

  • PDF

Uniform Fractional Band CAC Scheme for QoS Provisioning in Wireless Networks

  • Rahman, Md. Asadur;Chowdhury, Mostafa Zaman;Jang, Yeong Min
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.583-600
    • /
    • 2015
  • Generally, the wireless network provides priority to handover calls instead of new calls to maintain its quality of service (QoS). Because of this QoS provisioning, a call admission control (CAC) scheme is essential for the suitable management of limited radio resources of wireless networks to uphold different factors, such as new call blocking probability, handover call dropping probability, channel utilization, etc. Designing an optimal CAC scheme is still a challenging task due to having a number of considerable factors, such as new call blocking probability, handover call dropping probability, channel utilization, traffic rate, etc. Among existing CAC schemes such as, fixed guard band (FGB), fractional guard channel (FGC), limited fractional channel (LFC), and Uniform Fractional Channel (UFC), the LFC scheme is optimal considering the new call blocking and handover call dropping probability. However, this scheme does not consider channel utilization. In this paper, a CAC scheme, which is termed by a uniform fractional band (UFB) to overcome the limitations of existing schemes, is proposed. This scheme is oriented by priority and non-priority guard channels with a set of fractional channels instead of fractionizing the total channels like FGC and UFC schemes. These fractional channels in the UFB scheme accept new calls with a predefined uniform acceptance factor and assist the network in utilizing more channels. The mathematical models, operational benefits, and the limitations of existing CAC schemes are also discussed. Subsequently, we prepared a comparative study between the existing and proposed scheme in terms of the aforementioned QoS related factors. The numerical results we have obtained so far show that the proposed UFB scheme is an optimal CAC scheme in terms of QoS and resource utilization as compared to the existing schemes.

A Forwarding Scheme for (m,k)-firm Streams Based on Local Decision in Wireless Sensor Networks

  • Li, Bijun;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.775-779
    • /
    • 2011
  • As the technology of multimedia sensor networks is desired in large numbers of applications nowadays, real-time service becomes one of the most important research challenges. Even though lots of related works have been conducted to meet this requirement in several ways, the specific traffic model for real-time has not been taken yet. Thus, it causes lack of adaptability of those approaches in real deployment. To solve this problem, in this paper, we model the application via (m,k)-firm streams which have weakly hard real-time property. And then, a novel forwarding scheme based on modified DBP (Distance-Based Priority) is proposed by considering local-DBP and stream DBP together. Local-DBP can contribute to identify the detailed causes of unsatisfied quality, that is, network congestion or wireless link failure. Simulation results reveal that (m,k)-firm is a good traffic model for multimedia sensor networks and the proposed scheme can contribute to guarantee real-time requirement well.

A Real-Time MAC Protocol with Extended Backoff Scheme for Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.341-346
    • /
    • 2011
  • Wireless sensor networks (WSNs) are formed by a great quantity of sensor nodes, which are consisted of battery-powered and some tiny devices. In WSN, both efficient energy management and Quality of Service (QoS) are important issues for some applications. Real-time services are usually employed to satisfy QoS requirements in critical environment. This paper proposes a real-time MAC (Medium Access Control) protocol with extended backoff scheme for wireless sensor networks. The basic idea of the proposed protocol employs (m,k)-firm constraint scheduling which is to adjust the contention window (CW) around the optimal value for decreasing the dynamic failure and reducing collisions DBP (Distant Based Priority). In the proposed protocol, the scheduling algorithm dynamically assigns uniform transmitting opportunities to each node. Numerical results reveal the effect of the proposed backoff mechanism.

On the QoS Behavior of Self-Similar Traffic in a Converged ONU-BS Under Custom Queueing

  • Obele, Brownson Obaridoa;Iftikhar, Mohsin;Kang, Min-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.286-297
    • /
    • 2011
  • A novel converged optical network unit (ONU)-base station (BS) architecture has been contemplated for next-generation optical-wireless networks. It has been demonstrated through high quality studies that data traffic carried by both wired and wireless networks exhibit self-similar and long range dependent characteristics; attributes that classical teletraffic theory based on simplistic Poisson models fail to capture. Therefore, in order to apprehend the proposed converged architecture and to reinforce the provisioning of tightly bound quality of service (QoS) parameters to end-users, we substantiate the analysis of the QoS behavior of the ONU-BS under self-similar and long range dependent traffic conditions using custom queuing which is a common queuing discipline. This paper extends our previous work on priority queuing and brings novelty in terms of presenting performance analysis of the converged ONU-BS under realistic traffic load conditions. Further, the presented analysis can be used as a network planning and optimization tool to select the most robust and appropriate queuing discipline for the ONU-BS relevant to the QoS requirements of different applications.