• Title/Summary/Keyword: Priority scheduling

Search Result 394, Processing Time 0.02 seconds

Development of an Extended EDS Algorithm for CAN-based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2369-2373
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS (Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm haying a solution to the priority inversion. In the proposed algorithm, the available bandwidth of network media can be checked dynamically by all nodes. Through the algorithm, arbitration delay causing the miss of their deadline can be avoided in advance. Also non real-time messages can be processed with their bandwidth allocation. The proposed algorithm can achieve full network utilization and enhance aperiodic responsiveness, still guaranteeing the transmission of periodic messages.

  • PDF

Priority Assignment Procedure in Multi-Product Disassembly

  • Min, Sundong;Matsuoka, Shinobu;Muraki, Masaaki
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.12-21
    • /
    • 2004
  • This paper investigates the design of a priority rule in a multi-product disassembly environment. Specifically, it is concerned with product scheduling by which the inventory control of disassembled parts can be incorporated into a priority rule to reduce part lead times. The part lead time consists of two components: flow time and supply delay. The primary focus of the paper is on the development of a disassembly priority rule that aims to reduce the supply delay. We propose a priority rule, called Minimum Distance (MD) rule, to improve the supply delay performance. Finally, we provide a comparative analysis on the performance of traditional rules and the new rule proposed in this paper via a simulation model.

An Effective Priority Method Using Generator's Discrete Sensitivity Value for Large-scale Preventive Maintenance Scheduling (발전기 이산 민감도를 이용한 효율적인 우선순위법의 대규모 예방정비계획 문제에의 적용 연구)

  • Park, Jong-Bae;Jeong, Man-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.234-240
    • /
    • 1999
  • This paper presents a new approach for large-scale generator maintenance scheduling optimizations. The generator preventive maintenance scheduling problems are typical discrete dynamic n-dimensional vector optimization ones with several inequality constraints. The considered objective function to be minimized a subset of{{{{ { R}^{n } }}}} space is the variance (i.g., second-order momentum) of operating reserve margin to levelize risk or reliability during a year. By its nature of the objective function, the optimal solution can only be obtained by enumerating all combinatorial states of each variable, a task which leads to computational explosion in real-world maintenance scheduling problems. This paper proposes a new priority search mechanism based on each generator's discrete sensitivity value which was analytically developed in this study. Unlike the conventional capacity-based priority search, it can prevent the local optimal trap to some extents since it changes dynamically the search tree in each iteration. The proposed method have been applied to two test systems (i.g., one is a sample system with 10 generators and the other is a real-world lage scale power system with 280 generators), and the results anre compared with those of the conventional capacith-based search method and combinatorial optimization method to show the efficiency and effectiveness of the algorithm.

  • PDF

Comparative Study on Jitter Control Methods for Improving Real-Time Control Performance (실시간 제어 성능 향상을 위한 지터 제어 기법의 비교 연구)

  • Park, Moon-Ju;Lim, Yang-Mi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • This paper compares and studies scheduling methods to reduce jitter in real-time control systems. While previous research has focused on dynamic-priority scheduling schemes, this paper focuses on fixed-priority scheduling which is more widely used. It is pointed out that previously defined jitter measures might not be useful in enhancing the control performance of a real-time task because the measures are relative values. We present a new jitter measure and a new scheduling scheme for fixed-priority tasks. The experimental results through simulation show that the new scheduling scheme reduces jitter and enhances control performance.

A Scheduling Algorithm for Servicing (m,k)-firm-based Request Data from RSU Using in VANETs (VANET내 RSU에서 (m,k)-firm 기반 요청 데이터 처리를 위한 스케쥴링 알고리즘)

  • Nam, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2665-2670
    • /
    • 2015
  • VANET is ad-hoc network in which vehicles are treated as node and these nodes are communicating with each other as well as RSUs on the road. In VANET, scheduling is a very important issue as the request data are to be delivered to the recipient vehicle properly and accurately. It is also critical that any request data which is sent to the vehicle is received by it in the time period for which the vehicle will be in range of RSU. RSU picks the one with the highest priority to serve based on the scheduling scheme. In this paper, we propose a scheduling algorithm to select the one with the highest priority in RSU, in which an RSU can transfer the overload requests to other RSUs. We use the modified DBP scheme to calculate the priority of request data. Simulation results show that our scheme outperforms other scheduling schemes under various conditions.

A Modified-DWRR Cell Scheduling Algorithm improved the QoS of Delay (지연 특성을 개선한 Modified-DWRR 셀 스케쥴링 알고리즘)

  • Gwak, Ji-Yeong;Nam, Ji-Seung
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.805-814
    • /
    • 2001
  • In this paper, we propose a new scheduling algorithm that guarantees the delay property of real-time traffic, not considered in previous DWRR(Dynamic Weighted Round Robin) algorithm and also transmits non-real-time traffic efficiently. The proposed scheduling algorithm is a variation of DWRR algorithm to guarantee the delay property of real-time traffic by adding cell transmission method based on delay priority. It also uses the threshold to prevent the cell loss of non-real-time traffic due to cell transmission method based on delay priority. Proposed scheduling algorithm may increase some complexity over conventional DWRR scheme because of cell transmission method based on delay priority. However, the consideration of delay priority can minimize cell delay and require less size of temporary buffer. Also, the results of our performance study shows that the proposed scheduling algorithm has better performance than conventional DWRR scheme due to reliable ABR service and congestion avoidance capacity.

  • PDF

Optimal Scheduling of Ice Storage System with Prediction of Cooling Loads (예측 냉방부하를 이용한 빙축열시스템의 최적 운전계획)

  • 이경호;최병윤;주용진;이상렬;한승호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.982-993
    • /
    • 2000
  • This paper describes an optimal control scheduling of an encapsulated ice storage system with a chiller of nominal chiller 34RT(103,200kcal/hr) and an ice storage tank of 170RT-hrs(514,080 kcal). The optimization technique used in the study is dynamic programing. The objective function is summed cost during a day including charge and discharge periods. Control strategies being used commercially are chiller priority and storage priority control. In chiller priority control, the chiller is allowed to run at full capacity during the day, subject to limitations of the building load, and the ice is only melted when and if the load exceeds the chillers full capacity. In contrast to chiller priority control, the aim in storage priority control is to melt as much as ice as possible during the day time period. The system simulation calculates the operation costs for the three control strategies in the condition of the same cooling load and the same ice storage system. The simulation period is a day, assuming that initially the tank is stored fully and the cooling load is perfectly predicted for the scheduling. Also Final state of the tank is to be charged fully.

  • PDF

Multiple Rotating Priority Queue Scheduler to Meet Variable Delay Requriment in Real-Time Communication (실시간 통신에서 가변 지연을 만족하기 위한 Multiple Rotating Priority Queue Scheduler)

  • Hur, Kwon;Kim, Myung-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2543-2554
    • /
    • 2000
  • Packet schedulers for real-time communication must provide bounded delay and efficient use of network resources such as bandwidth, buffers and so on. In order to satisfy them, a large number of packet scheduling methods have been proposed. Among packet scheduling methods, an EDF (Earliest Deadline First) scheduling is the optimal one for a bounded delay service. A disadvantage of EDF scheduling is that queued packets must be sorted according to their deadlines, requiring a search operation whenever a new packet arrives at the scheduler. Although an RPQ (Rotating Priority Queue) scheduler, requiring large size of buffers, does not use such operation, it can closely approximate the schedulability of an EDF scheduler. To overcome the buffer size problem of an RPQ scheduler, this paper proposes a new scheduler named MRPQ (Multiple Rotating Priority Queue). In a MRPQ scheduler, there are several layers with a set of Queues. In a layer, Queues are configured by using a new strategy named block Queue. A MRPQ scheduler needs nearly half of buffer size required in an RPQ scheduler and produces schedulability as good as an RPQ scheduler.

  • PDF

An Improved DWRR Cell Scheduling Algorithm based on the QoS of Delay (지연 특성을 고려한 개선된 DWRR 셀 스케쥴링 알고리즘)

  • 곽지영;김체훤;김두현;남지승
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.81-84
    • /
    • 2000
  • Scheduling algorithm proposed in this paper is based on both DWRR(Dynamic Weighed Round Robin) method and QLT(Queue Length Threshold) method. The proposed scheduling algorithm guarantees delay property of realtime traffic, not considered in previous DWRR method, with serving realtime traffic preferentially by using RR(Round Robin) method which service each channel equally and QLT algorithm that is dynamic time priority method. Proposed cell scheduling algorithm may increase some complexity over conventional DWRR scheme because of delay priority based cell transmission method. However, due to reliable ABR service and congesition avoidance capacity, proposed scheduling algorithm has good performance over conventional DWRR scheme. Also, delay property based cell transmission method in proposed algorithm minimizes cell delay and requires less temporary buffer size

  • PDF

Lyapunov-based Fuzzy Queue Scheduling for Internet Routers

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.317-323
    • /
    • 2007
  • Quality of Service (QoS) in the Internet depends on queuing and sophisticated scheduling in routers. In this paper, we address the issue of managing traffic flows with different priorities. In our reference model, incoming packets are first classified based on their priority, placed into different queues with different capacities, and then multiplexed onto one router link. The fuzzy nature of the information on Internet traffic makes this problem particularly suited to fuzzy methodologies. We propose a new solution that employs a fuzzy inference system to dynamically and efficiently schedule these priority queues. The fuzzy rules are derived to minimize the selected Lyapunov function. Simulation experiments show that the proposed fuzzy scheduling algorithm outperforms the popular Weighted Round Robin (WRR) queue scheduling mechanism.