• Title/Summary/Keyword: Priority Management Reservoir

Search Result 18, Processing Time 0.02 seconds

Application of a Watershed-Based Land Prioritization Model for the Protection of Drinking Water Reservoir (상수원 보호를 위한 유역기반 토지관리 우선순위 모델 적용)

  • Lee, Jee Hyun;Choi, Ji Yang;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.397-408
    • /
    • 2004
  • Due to the growing impact of non-point source pollution and limitation of water treatment technology, a new policy of water quality management, called a source protection, is now becoming more important in drinking water supply. The source protection means that the public agency purchases the pollution sensitive area, such as riparian zone, and prohibit locations of point and non-point sources. Many studies have reported that this new policy is more economical in drinking water supply than the conventional one. However, it is very difficult to determine location and size of the pollution sensitive zone in the watershed. In this paper, we presented the scientific criteria for the priority of the pollution sensitive zone, along with a case study of the upstream watershed of the Paldang Reservoir, Han River. This study includes applications of the analytical hierarchy process(AHP) and a watershed-based land prioritization(WLP) model. After major criteria affecting water quality were selected, the AHP and geographic analysis were performed. The WLP model allowed us to include both quantity and quality criteria, using AHP as the multi-criteria method in making decision and reflecting local characteristics and various needs. By adding a travel-time function, which represents the prototype effectively, the results secured adaptability and scientific objectivity as well. As such, the WLP model appeared to provide reasonable criteria in determining the prioritization of land acquisition. If the tested data are used with a validated travel-time and AHP method is applied after further discussion among experts in such field, highly reliable results can be obtained.

Basin Ecosystem Management Plan for Water Quality in the Agricultural Reservoir (농업용 저수지의 수질관리를 위한 유역생태계 관리방안)

  • Lee, Soo-Dong;Hong, Suk-Hwn;Kim, Tae-Kyun
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.2
    • /
    • pp.233-246
    • /
    • 2012
  • We need to analyze the ecological characteristics in the basin of agricultural reservoir that include urbanized area, agricultural area and fringe area, etc. The purpose of this study is not only that presenting the methods of basin ecosystem management but also suggesting ecosystem management plan proposals for the water quality based on analysis of ecological characteristics. As the results of analysis, the urbanized area(the ratio of area(ROA): 14.0%) is most likely to possibility of water pollution, then followed by paddy fields(ROA: 65.5%) where a wide spread up-basin(or up-stream), farmlands(ROA: 11.3%), farm buildings(ROA: 5.7%) and orchard(ROA: 3.9%). According to those, we investigated the impact degree of water pollutants. Thus, we were able to classify 5 types through considering the biotope assessment and the hydrosphere basin assessment, i.e. the level of priority control for source pollution. As a result, the source pollution intensive management area(11.3%) where are adjacent waterfront has caused water pollution, however, most importantly, it is necessary to control in source pollution management area(0.6%) that are away from waterfront. In conclusion, according to the these results, the plan of basin ecosystem management for the water quality should be included the plan of ecosystem conservation and restoration such as improving inhabitants function, controling environmentally sound basin management, promoting biodiversity.

Risk Analysis Method for Deriving Priorities for Detailed Inspection of Small and Medium-sized Fill Dam (중소형 필댐의 정밀점검 우선순위 도출을 위한 간이 위험도 분석 방법)

  • Kim, Jinyoung;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.11-16
    • /
    • 2020
  • Korea's agricultural reservoir is one of the country's major infrastructures and plays an important role in people's lives. However, aging reservoirs are a risk for life and property. Currently, large and small dams and reservoirs have been constructed nationwide for more than 40 years of aging. Dams and reservoirs built nationwide are managed by various institutions. Therefore, it is difficult to manage all dams and reservoirs due to cost and time. Managers in the field with less management personnel and lack of expertise should be able to quickly identify risk factors for multiple reservoirs. In this study, risk factors such as seepage, leakage, settlement slide, crack and erosion were selected. To assess the risk of the items, we used the analytical hierarchical process (AHP), one of the Multi-Criteria Decision Making (MCDM) methods. The analysis showed that seepage has the greatest impact on reservoir collapse. It is judged that the priority of detailed diagnosis can be determined by evaluating the risk of dam reservoir collapse in a convenient way in advance using the calculated weight.

Effectiveness Analysis of Alternatives to Rehabilitate the Distorted hydrologic Cycle in the Anyangcheon Watershed using HSPF (HSPF 모형을 이용한 안양천 유역의 물순환 건전화 대안기술 효과분석)

  • Chung, Eun-Sung;Lee, Joon-Seok;Lee, Kil Seong;Kim, Sang-Ug;Kim, Kyung-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.973-984
    • /
    • 2007
  • This study developed and calculated alternative evaluation index (AEI) from the effectiveness analyses of alternatives for rehabilitation of distorted hydrologic cycle. The feasible alternatives for the poor-conditioned region in the Anyangcheon watershed were proposed and quantitatively analyzed using continuous water quantity/quality simulation model, Hydrological Simulation Program-Fortran (HSPF). The effectiveness analyses include 355th flow and 275th flow of flow duration curve and number of increased days to satisfy the target monthly flow for water quantity and BOD average concentration, total daily loads and number of increased days to satisfy the target concentration and total daily loads. The feasible alternatives are restoration of covered stream, prevention of streamflow loss through sewers, redevelopment of existing reservoir, reuse of treated wastewater, use of groundwater collected by subway stations and construction of small wastewater treatment plant. Therefore, alternative priority ranking was derived from AEIs. It will be effective to make an integrated watershed management for sustainable development.

The Research of Storage Capacity & Sedimentation of Reservoirs in HONAM Province (호남지방에 저수지의 매몰상황과 저수량에 관한 조사연구(농학계))

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.2
    • /
    • pp.2262-2275
    • /
    • 1971
  • Fourteenes rervoirs maintained by the local land improvement associations in the province of Chullabuk-Do and 20 reservoir maintained by thos in the province of Chullanam-Do, were surveyed in connection with a correction between storage capacity and sediment deposit. In addition to this survey, 3,347 of small reservoir, that lie scattered around in the above-mentioned two provinces were investigated by using existing two provinces were investigated by using existing records pertaining to storage capacity in the office of City and country, respectively. According to this investigation the following comclusions are derived. 1. A sediment deposition rate is high, being about $10.63m^3/ha$ of drainage area, and resulting in the average decreasc of storage capaity by 27.5%. This high rate of deposition coule be mainly attributed to the serve denudation of forests due to disorderly cuttings of trees. Easpecially, in small reservoir, an original average design storage depth of 197mm in irrigation water depth is decreased to about 140mm. 2. An average unit storage depth of 325.6mm as the time of initial construction is decreased to 226mm at present. This phenomena causes a greater shortage irrigation water, since it was assumed that original storage quantity was already in short. 3. Generally speaking, seepage rates through dam abutment intakepipe, etc, are high due to insufficient maintenance and management of reservoir. 4. It is recommended that sediment deposit should be dredged when a reservoir is dry in drought. 5. Farmers usually waste excessive irrigation water. 6. Water saving methods should be practiced by applying only necessary water for growing stage of rice. 7. In are as where water defficiency for irrigation is severe, a soil moisture content should be kept at about 70% by applying water once in several days. 8. Tube wells should be provided so as to exploit ground water and subsurface current below stream bed as much as possible. 9. If an intake weir was constructed, a water collection well should be built for the use in drought. 10. Water conservation should be forced by converting devastated forests contained in the drainage area of reservoir to protected forests so as to take priority of yrefor estation, gully control, the prohibition of disorderly cutting of trees, etc. 11. Collective rice nurseries should be adopted, and it should be recommended that irrigation water for rice nurseries is supplied by farmer themselves. 12. Sediment desposit in reservoir should be thoroughly dreged so as to secure a original design storage capacity. 13. The structure of overflow weir should be automatic so as to freely control flood level and not to increase dam height.

  • PDF

The Analysis of Sediment Reduction Effect by Installing Check Dams at Domestic Multi-Purpose Dams (국내 다목적 댐의 저사댐 설치에 따른 퇴사저감 효과 분석)

  • Choi, Gye-Woon;Kim, Kwang-Nam;Han, Man-Shin;Yun, Yong-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.183-189
    • /
    • 2011
  • In this study sediments reduction effects on dam have been analyzed in the case of check dam installation in the upstream. Analyzed sediment reduction effects of 27 points conducted for 10 multi-purposes dam, which is target of this study. According to regression analysis result, Sediment reduction effect by installing check dam has shown inclination which increase as area ratio rises. According to analysis result, sediment reduction effect was greatest in Geum-river point at Daecheong-dam. The life-time is estimated to increases about 60% by installing check dams. When Area ratio increases, it was deduced through regression analysis that rise Sediment Reduction Effect by installing check dam. This study can be useful for the management and design plans like the dam's site or priority for placing. Furthermore, it would be able to construct an efficient sand depositing dam if complementary is provided by being considered catchment area and lucrative property.

Study on the Selecting of Suitable Sites for Integrated Riparian Eco-belts Connecting Dam Floodplains and Riparian Zone - Case Study of Daecheong Reservoir in Geum-river Basin - (댐 홍수터와 수변구역을 연계한 통합형 수변생태벨트 적지 선정방안 연구 - 금강 수계 대청호 사례 연구 -)

  • Bahn, Gwonsoo;Cho, Myeonghyeon;Kang, Jeonkyeong;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.327-341
    • /
    • 2021
  • The riparian eco-belt is an efficient technique that can reduce non-point pollution sources in the basin and improve ecological connectivity and health. In Korea, a legal system for the construction and management of riparian eco-belts is in operation. However, it is currently excluded that rivers and floodplains in dam reservoir that are advantageous for buffer functions such as control of non-point pollutants and ecological habitats. Accordingly, this study presented and analyzed a plan to select a site for an integrated riparian ecol-belt that comprehensively evaluates the water quality and ecosystem characteristics of each dam floodplain and riparian zone for the Daecheong Dam basin in Geum River watershed. First, the Daecheong Dam basin was divided into 138 sub-basin with GIS, and the riparian zone adjacent to the dam floodplain was analyzed. Sixteen evaluation factors related to the ecosystem and water quality impact that affect the selection of integrated riparian eco-belt were decided, and weights for the importance of each factor were set through AHP analysis. The priority of site suitability was derived by conducting an integrated evaluation by applying weights to sub-basin by floodplains and riparian zone factors. In order to determine whether the sites derived through GIS site analysis are sutiable for actual implementation, five sites were inspected according to three factors: land use, pollution sources, and ecological connectivity. As a result, it was confirmed that all sites were appropriate to apply integrated riparian ecol-belt. It is judged that the riparian eco-belt site analysis technique proposed through this study can be applied as a useful tool when establishing an integrated riparian zone management policy in the future. However, it might be necessary to experiment various evaluation factors and weights for each item according to the characteristics and issues of each dam. Additional research need to be conducted on elaborated conservation and restoration strategies considering the Green-Blue Network aspect, evaluation of ecosystem services, and interconnection between related laws and policy and its improvements.

Characterization of Stormwater Runoff according to Sewer System in Paldang Watershed (하수도 시스템 유무에 따른 강우유출특성 분석 - 팔당호 유역을 대상으로)

  • Kang, Dong-Han;Sajjad, Raja Umer;Kim, Keuktae;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.142-148
    • /
    • 2016
  • The characterization of stormwater runoff from mix land-use catchments with an inadequate sewer network is a challenge. This study focused on characterizing stormwater runoff from the Paldang watershed area based on land-use type and sewer system coverage. A total of 76 sites were monitored during wet weather from seven different counties within Paldang watershed. Public sewer system (PSS) was installed at 48 sites, while 28 sites had no or individual sewer system (ISS) coverage. The results indicated that the sites included in the ISS group with higher forest and paddy land-use percentage exhibit higher values of average event mean concentrations (EMCs) and first flush intensity for suspended solids (SS), total nitrogen (TN), and total phosphorous (TP). In addition, upgrading runoff interception system can capture 59 % of the TP load in the first 43% of runoff within these sites. Similarly, rainfall depth and storm duration showed a positive correlation (R > 0.6) with nutrient loads within ISS group sites, as compared to PSS group. Therefore, these sites are likely to contribute higher TP and TN loads during heavier storm events and should be selected as priority management areas to combat the problem of eutrophication in Paldang reservoir.