• Title/Summary/Keyword: Priority Control

Search Result 933, Processing Time 0.029 seconds

CRP-CMAC: A Priority-Differentiated Cooperative MAC Protocol with Contention Resolution for Multihop Wireless Networks

  • Li, Yayan;Liu, Kai;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2636-2656
    • /
    • 2013
  • To improve the cooperative efficiency of node cooperation and multiple access performance for multihop wireless networks, a priority-differentiated cooperative medium access control protocol with contention resolution (CRP-CMAC) is proposed. In the protocol, the helper selection process is divided into the priority differentiation phase and the contention resolution phase for the helpers with the same priority. A higher priority helper can choose an earlier minislot in the priority differentiation phase to send a busy tone. As a result, the protocol promptly selects all the highest priority helpers. The contention resolution phase of the same priority helpers consists of k round contention resolution procedures. The helpers that had sent the first busy tone and are now sending the longest busy tone can continue to the next round, and then the other helpers that sense the busy tone withdraw from the contention. Therefore, it can select the unique best helper from the highest priority helpers with high probability. A packet piggyback mechanism is also adopted to make the high data rate helper with packet to send transmit its data packets to its recipient without reservation. It can significantly decrease the reservation overhead and effectively improve the cooperation efficiency and channel utilization. Simulation results show that the maximum throughput of CRP-CMAC is 74%, 36.1% and 15% higher than those of the 802.11 DCF, CoopMACA and 2rcMAC protocols in a wireless local area network (WLAN) environment, and 82.6%, 37.6% and 46.3% higher in an ad hoc network environment, respectively.

FMS 스케쥴링을 위한 Priority 함수의 자동 생성에 관한 연구

  • 김창욱;신호섭;장성용;박진우
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1997.04a
    • /
    • pp.93-99
    • /
    • 1997
  • Most of the past studies on FMS scheduling problems may be classified into two classes, namely off-line scheduling and on-line scheduling approach. The off-line scheduling methods are used mostly for FMS planning purposes and may not be useful real time control of FMSs, because it generates solutions only after a relatively long period of time. The on-line scheduling methods are used extensively for dynamic real-time control of FMSs although the performance of on-line scheduling algorithms tends vary dramatically depending on various configurations of FMS. Current study is about finding a better on-line scheduling rules for FMS operations. In this study, we propose a method to create priority functions that can be used in setting relative priorities among jobs or machines in on-line scheduling. The priority functions reflect the configuration of FMS and the user-defined objective functions. The priority functions are generated from diverse dispatching rules which may be considered a special priority functions by themselves, and used to determine the order of processing and transporting parts. Overall system of our work consists of two modules, the Priority Function Evolution Module (PFEM) and the FMS Simulation Module (FMSSM). The PFEM generates new priority functions using input variables from a terminal set and primitive functions from a function set by genetic programming. And the FMSSM evaluates each priority function by a simulation methodology. Based on these evaluated values, the PFEM creates new priority functions by using crossover, mutation operation and probabilistic selection. These processes are iteratively applied until the termination criteria are satisfied. We considered various configurations and objective functions of FMSs in our study, and we seek a workable solution rather than an optimum or near optimum solution in scheduling FMS operations in real time. To verify the viability of our approach, experimental results of our model on real FMS are included.

  • PDF

A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method (부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석)

  • Kim, Dong Jun;Kang, Byung Ha;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.

A Study on Active Priority Control Strategy for Traffic Signal Progression of Tram (트램의 연속통행을 위한 능동식 우선신호 전략 연구)

  • Lee, In-Kyu;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.25-37
    • /
    • 2014
  • Recently, our local governments are conducting the introduction of tram system because it is recognized as an effective public transit that can solve a traffic jam in downtown, decreasing public transit share and environmental issues in world wide cities. We developed the Active Priority Control Strategy to efficiently operate a tram in our existing traffic signal system. This study organized the tram system for operating the Active Priority Signal Control, developed the algorithm that calculates a tram-stop dwell time in order to pass the downstream intersection without a stop. The dwell time is determined by arrival time at tram-stop, downstream signal time, and the location of a opposite tram, it can be reduced by choosing the optimal one among Signal Priority Controls. Using the VISSIM and VISVAP model, we conducted a simulation test for the city of Chang-won that it is expected to install a tram system. It showed that a developed signal control strategy is effective to prevent a tram's stop in intersections, to reduce a tram's travel time.

Performance Analysis of a Dynamic Priority Control Scheme for Delay-Sensitive Traffic (음성 트래픽을 위한 동적우선권제어방식의 성능분석)

  • 김도규;김용규;조석팔
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.3-11
    • /
    • 2000
  • This paper considers the performance of a dynamic priority control function (DPCF) of a threshold-based Bernoulli priority jump (TBPJ) scheme. Loss-sensitive and delay-sensitive traffics are applied to a system with a TBPJ scheme that is a general state-dependent Bernoulli scheduling scheme. Loss-sensitive and delay-sensitive traffics represent sound and data, respectively. Under the TBPJ scheme, the first packet of the loss-sensitive traffic buffer goes into the delay-sensitive traffic buffer with Bernoulli probability p according to system states which represent the buffer thresholds and the number of packets waiting for scheduling. Performance analysis shows that TBPJ scheme obtains large performance build-up for the delay-sensitive traffic without performance degradation for the loss-sensitive traffic. TBPJ scheme shows also better performance than that of HOL scheme.

  • PDF

Cell Marking Priority Control Considering User Level Priority in ATM Network (ATM 네트워크에서 사용자 레벨 우선 순위를 고려한 셀 마킹 및 우선 순위 제어)

  • O, Chang-Se;Kim, Tae-Yun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.490-501
    • /
    • 1994
  • In this study the problems of cell marking method used in the field of ATM network traffic control are presented. Also an extended cell marking method considering the user level priority is proposed. The conventional traffic monitoring schemes set the CLP bit of a cell to 1 only under the circumstance of the violation of traffic contract. It causes that the number of low level cells increases and the levels of cells are lowered regardless of the user level priority. The three level priority control method combining FCI bit with CLP bit has also been proposed. It divides CLP=0 cells into two levels. Consequently, the proposed method preserves more cells in high level than the conventional one and the real loss of high level cells can be reduced. The performance of the proposed scheme has also been analyzed by the PBS(partial buffer sharing) with two thresholds for the proposed three levels. The result shows that the PBS with two thresholds can give more efficient control than the scheme with no priority, or the PBS with one threshold.

  • PDF

Performance Analysis of Threshold-based Bernoulli Priority Jump Traffic Control Scheme (동적우선권제어함수 기반 TBPJ 트래픽 제어방식의 성능분석)

  • Kim, Do-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11S
    • /
    • pp.3684-3693
    • /
    • 2000
  • In this paper, performance of a nonblocking high speed packet switch with switching capacity m which adopts a dynamic priority control function (DPCF) of a threshold- based Bernoulli priority jump (TBPJ) scheme is considered. Each input queue has two separate buffers with different sizes for two classes of traffics, delay-sensitive and loss-sensitive traffics, and adopts a TBPJ scheme that is a general state-dependent Bernoulli scheduling scheme. Under the TBP] scheme, a head packet of the delay-sensitive traffic buffer goes into the loss -sensitive traffic buffer with Hernoulli probability p according to systems states that represent the buffer thresholds and the number of packets waiting for scheduling. Performance analysis shows that TBPJ scheme obtains large performance build-up for the delay-sensitive traffic without performance degradation for the loss-sensitive traffic. In addition to, TBP] scheme shows better performance than that of HOL scheme.

  • PDF

EEPB-MAC: Energy Efficient & Priority-Based MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 수확 무선 센서 네트워크에서 에너지 효율 및 우선순위 기반의 MAC 프로토콜)

  • Kim, Seong-Cheol;Jeon, Jun-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.755-761
    • /
    • 2013
  • Medium access control (MAC) protocols for wireless sensor networks make sensor nodes on state for energy-efficiency only when necessary. In this paper we present an energy efficient priority-based MAC protocol for energy-harvesting Wireless Sensor Networks (WSNs). For support priority-based packet transmission the proposed EEPB-MAC protocol uses the modified IEEE 802.15.4 beacon frames including priority bit, sender node address, and NAV value fields. A receiver node periodically wakes up, receives sender beacon frames, selects data sending sender, and broadcasts a beacon frame containing the selected sender's address. A receiver node selects sender node according to sender's data priority. A receiver nodes also adjust wake up period based on their energy states. Hence, the energy consumption of receiver node can be minimized. Through simulations and analytical analysis, we evaluate the performance of our proposed the EEPB-MAC protocol and compare it against the previous MACs. Results have shown that our protocol outperforms other MAC in terms of energy consumption, higher priority packet delivery delay.

A Study on Reactive Congestion Control with Loss Priorities in ATM Network (ATM 네트워크에서 우선권을 갖는 반응 혼잡 제어에 관한 연구)

  • Park, Dong-Jun;Kim, Hyeong-Ji
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.697-708
    • /
    • 1996
  • In this paper, we study reactive congestion control with priority in ATM network. The priority schemes for buffer access, partial buffer sharing have been investigated in order to improve the utilization of ATM network resources the network and to satisfy the most demanding traffic class. We consider in this paper a discrete-time queueing model for partial buffer sharing with two Markov modulated Poisson inputs. This model can be used to analyze the the effects of the partial buffer sharing priority scheme on system performance for realistic cases of bursty services. Explicit formulae are derived for the number of cells in the system and the loss probabilities for the traffic. Congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this Paper, we study reactive congestion control, in which each source changes its cell emitting rate a daptively to the traffic load at the switching node. Our intention is that,by incorporating such a congcstion control method in ATM network,more efficient congsestion control is established. We develope an analytical model,and carry out an approximateanalysis of reactive congestion con-trol with priority.Numerical results show that several orders of magnitude improvement in the loss probability can be achieved for the high priority class with little impact on the low priority class performance.And the results show that the reactive congestion control with priority are very effective in avoiding congestion and in achieving the statistical gain.

  • PDF

A Transaction Manager for Real-Time Database Systems Using Classified Queue (분류된 클래스 큐를 이용한 실시간 데이터베이스 시스템의 트랜잭션 관리기)

  • Kim, Gyoung-Bae;Bae, Hae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2751-2762
    • /
    • 1998
  • In this paper, a new priority assignment ploicy and concurrency control for improvement of transaction predictability and performance are proposed. We present a new priority assignment algorithm called classified priority assignment(CPA), which solves the defects of Earliest Deadline First(EDF) by using class and bucket, and deals with real-time transaction and time-sharing transaction effectively. Also, we present a new concurrency control policy called conditional optimistic concurrency control using lock. It uses optimistic concurrency control for improvement of predictability, and solves transaction conflict by considering priority and execution time of transaction to waste less system resource.

  • PDF