• Title/Summary/Keyword: Printing properties

Search Result 825, Processing Time 0.022 seconds

Evaluation of Image Quality of Inkjet Printing on the Spun Polyester Fabrics

  • Park, Heung-Sup
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.61-71
    • /
    • 2006
  • This paper addresses the factors hindering the image quality of lines in inkjet printed on polyester fabric as printing media. Lines were printed onto different types of polyester fabrics in warp and filling directions. Line image quality including line width, edge blurriness, and edge raggedness was assessed. The effect of capillary wicking on line image quality of printed spun polyester fabric is discussed. The factors on the image quality include printing position(top of the yam or between the yarn), printing direction(warp or filling), yarn structures(filament or spun), thread size(yam or fiber), finishing, and ink properties(evaporation rate). More than 30% differences in image quality results were observed by changing the printing location on the spun polyester fabric. The best results of the image quality were obtained with the printed plain and spun polyester fabrics. The fiber sizes may affect capillary size; therefore, the image quality can be dissimilar. Types of finishing materials and inks greatly improve the line image quality on spun polyester fabrics.

Printability Improvement of Hanji (한지의 인쇄적성 향상)

  • Hyun Kyung-Su;Kim Min-Jung;Lee Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.52-59
    • /
    • 2005
  • Most of printing paper market today have been occupied by western paper and some machine-made Hanji used don't show the characteristic advantages for traditional hand-made Hanji. Although hand-made Hanji has an aesthetic and qualitative value, it has limited uses because of poor printability as printing paper. Unlike western paper, conventional Hanji cannot be used as Printing paper because it is impossible to make the clear formation of printed dot and to develop a high level of sizing and picking problem occurs during printing. Improvements of physical and optical properties such as roughness, smoothness, air permeability, contact angle, opacity, and paper gloss as well as sizing level were accomplished through internal and surface sizing and calendering, which made the paper better suited for printing and decreased problems during printing.

Design and Multi-scale Analysis of Micro Contact Printing (미세접촉인쇄기법의 설계와 다중스케일해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1927-1931
    • /
    • 2003
  • Nanometer-sized structures are being applied to many fields including micro/nano electronics, optoelectronics, quantum computing, biosensors, etc. Micro contact printing is one of the most promising methods for manufacturing the nanometer-sized structures. The crucial element for the micro contact printing is the nano-resolution printing technique using polymeric stamps. In this study, a multi-scale analysis scheme for simulating the micro contact printing process is proposed and some useful analysis results are presented. Using the slip-link model [1], the dependency of viscoelasticity on molecular weight of polymer stamp is predicted. Deformation behaviors of polymeric stamps are analyzed using finite element method based upon the predicted viscoelastic properties.

  • PDF

Physical and electrical properties of PLA-carbon composites

  • Kang Z. Khor;Cheow K. Yeoh;Pei L. Teh;Thangarajan Mathanesh;Wee C. Wong
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.211-220
    • /
    • 2024
  • Polylactic acid or polylactide (PLA) is a biodegradable thermoplastic that can be produced from renewable material to create various components for industrial purposes. In 3D printing technology, PLA is used due to its good mechanical, electrical, printing properties, environmentally friendly and non-toxic properties. However, the physical properties and excellent electrical insulation properties of PLA have limited its application. In this study, with the carbon black (CB) as filler added into PLA, the lattice spacing and morphology were investigated by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The physical properties of PLA-carbon composite were evaluated by using tensile test, shore D hardness test and density and voids measurement. Impedance test was conducted to investigate the electrical properties of PLA-Carbon composites. The results demonstrate that the inclusion of carbon black as filler enhances the physical properties of the PLA-carbon composites, including tensile properties, hardness, and density. The addition of carbon black also leads to improved electrical conductivity of the composites. Better enhancement toward the electrical properties of PLA-carbon composites is observed with 1wt% of carbon black in N774 grade. The N550 grade with 2wt% of carbon black shows better improvement in the physical properties of PLA-carbon composites, achieving 10.686 MPa in tensile testing, 43.330 in shore D hardness test, and a density of 1.200 g/cm3 in density measurement. The findings suggest that PLA-carbon composites have the potential for enhanced performance in various industrial applications, particularly in sectors requiring improved physical and electrical properties.

Effects of Montmorillonite Clay on Properties of paper Coating Additives

  • Seo Yoon-Seok;Nah Chang-Woon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.34-44
    • /
    • 2006
  • A new composition of paper coating adhesives was prepared by using a nano-filler of an organically-modified montmorillonite (O-MMT). The new O-MMT coating adhesives were applied to the paper, and the properties of coated papers including surface morphology, optical and physical properties, and printing properties were investigated. The use of O-MMT improved the mechanical properties, such as folding endurance, tearing strength, and tensile strength, while the surface smoothness decreased. It decreased especially when the dosage was high enough, approximately above 6 parts. The printing properties such as wet- and dry-pick were enhanced with addition of O-MMT.

Influence of Powder Size on Properties of Selectively Laser-Melted- AlSi10Mg Alloys (AlSi10Mg 합금분말 크기가 선택적 레이저 용융된 3차원 조형체 특성에 미치는 영향)

  • Eom, Yeong Seong;Kim, Dong Won;Kim, Kyung Tae;Yang, Sang Sun;Choe, Jungho;Son, Injoon;Yu, Ji Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Aluminum (Al) - based powders have attracted attention as key materials for 3D printing because of their excellent specific mechanical strength, formability, and durability. Although many studies on the fabrication of 3D-printed Al-based alloys have been reported, the influence of the size of raw powder materials on the bulk samples processed by selective laser melting (SLM) has not been fully investigated. In this study, AlSi10Mg powders of 65 ㎛ in average particle size, prepared by a gas atomizing process, are additively manufactured by using an SLM process. AlSi10Mg powders of 45 ㎛ average size are also fabricated into bulk samples in order to compare their properties. The processing parameters of laser power and scan speed are optimized to achieve densified AlSi10Mg alloys. The Vickers hardness value of the bulk sample prepared from 45 ㎛-sized powders is somewhat higher than that of the 65 ㎛m-sized powder. Such differences in hardness are analyzed because the reduction in melt pool size stems from the rapid melting and solidification of small powders, compared to those of coarse powders, during the SLM process. These results show that the size of the powder should be considered in order to achieve optimization of the SLM process.

The Effects of Ink Emulsion on Printed Mottle (잉크 유화가 인쇄 모틀에 미치는 영향)

  • Ha, Young-Baeck;Lee, Yong-Kyu;Kim, Chang-Keun;Oh, Sung-Sang;Lim, Jong-Hag;Youn, Jong-Tae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.2 s.120
    • /
    • pp.31-37
    • /
    • 2007
  • Lithography like off-set printing is processed using the repellent properties between water and oil, so all inks for off-printing must work with dampening solution(water). The dampening water may cause the emulsification of ink by the printing pressure in the printing nip. This study aimed to investigate the effect of emulsified inks on print mottle. The cyan ink was emulsified artificially with the different IPA(isopropyl alcohol) content in this study. We evaluated the print mottle by densitometer and image analysis method. The print mottle phenomenon was directly affected by IPA content. The emulsification of inks also had an influence on flow properties of inks and it increased ink transfer rate. It, however, caused low ink density. Moreover the emulsified inks were spreaded to around dots and cause the thinning density on the non-printing area like print mottle. The trial printing showed that the emulsified inks also cause scumming on the printing result with little mistake of adjusting dampening solution and mostly decreasing dot reproduction. We could, therefore, find out the obvious effect of emulsified inks on print mottle.

Analysis of Ink Transfer for R2R Printing Process with High Speed Operation and Complex Roll Patterns (고속 웹 이송속도 및 복잡한 롤 패턴 형상을 고려한 R2R공정에서의 잉크전달 특성 해석)

  • Kim, Kyung-Hun;Kim, So-Hee;Na, Yang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.55-60
    • /
    • 2010
  • Ink transfer process from the printing roll to the moving web was investigated using a CFD technique for the application in R2R printed electronics. In line with the requirement that the web handling speed needs to be increased further for the cost competitiveness, the effects of web moving velocity with relatively complex roll patterns were analyzed. To make the present analysis more realistic, the numerical geometry and the ink properties were selected to match those of the real printing production system. Our numerical results showed that both web handling speed and complex printing-roll patterns influenced the shape of the transferred ink. As the web moving speed approaches towards 30mpm, a significant distortion of the shape of the transferred ink occurred. In the range of pattern width smaller than 100 microns, a phase distortion was also found to occur in all the printing-roll patterns considered in the present work but the ratio of the phase distortion to the line width gets smaller as the width becomes smaller. Thus, the web handling speed and the shape of printing-roll pattern will be important elements for the better printing quality under 100 micron line width range.

Gravure Offset Printed on Fine Pattern by Developing Electrodes for the Ag Paste (Gravure Offset 인쇄에 의한 미세 전극용 Ag Paste 개발)

  • Lee, Sang-Yoon;Jang, Ah-Ram;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.45-56
    • /
    • 2012
  • Printing technology is accepted by appropriate technology that smart phones, tablet PC, display(LCD, OLED, etc.) precision recently in the electronics industry, the market grows, this process in the ongoing efforts to improve competitiveness through the development of innovative technologies. So printed electronics appeared by new concept. This technology development is applied on electronic components and circuits for the simplification of the production process and reduce processing costs. Low-temperature process making possible for widening, slimmer, lighter, and more flexible, plastic substrates, such as(flexible) easily by forming a thin film on a substrate has been studied. In the past, the formation of the electrode used a screen printing method. But the screen printing method is formation of fine patterns, high-speed printing, mass production is difficult. The roll-to-roll printing method as an alternative to screen printing to produce electronic devices by printing techniques that were used traditionally in the latest technology and processing techniques applied to precision control are very economical to implement fine-line printing equipment has been evaluated as. In order to function as electronic devices, especially the dozens of existing micro-level of non-dot print fine line printing is required, the line should not break at all, because according to the specifications required to fit the ink transfer conditions should be established. In this study of roll-to-roll printing conductive paste suitable for gravure offset printing by developing Ag paste for forming fine patterns to study the basic physical properties with the aim of this study were to.

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.