• 제목/요약/키워드: Printing industry

검색결과 496건 처리시간 0.027초

3차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구 (A study of correction dependent on process parameters for printing on a three-dimensional surface)

  • 송민섭;김효찬;이상호;양동열
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.181-190
    • /
    • 2006
  • In the industry, three-dimensional coloring has been needed for a realistic prototype. The Z-corporation developed a 3D printer which provides a three-dimensional colored prototype. However, the process cannot be adopted to models fabricated by other rapid prototyping processes. In addition, time and cost for manufacturing colored prototypes still remain to be improved. In this study, a new coloring process using an ink-jet head is proposed for color printing on a three-dimensional surface. Process parameters such as the angle and the distance between the ink-jet nozzle and the three-dimensional surface should be investigated through experiments. In order to minimize the distortion of a 2D image, the correction matrix according to the sloped angle is proposed and obtained by analysis of printing errors. An image on the doubly curved surface is printed so as to verify the proposed method. As a practical example, a helmet is chosen for printing images on the curved surface. The practical applicability of the correction matrix is then demonstrated by printing the character images on the surface of the helmet.

Short Review of 3D Printed Piezoelectric Sensors

  • Chang, Sang-Mi;Kang, Chong-Yun;Hur, Sunghoon
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.279-285
    • /
    • 2022
  • Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.

해외 패키징 산업현황과 방향 (Current Status and Trends of Overseas Packaging Industries)

  • 김재능;이윤석
    • 한국포장학회지
    • /
    • 제11권2호
    • /
    • pp.109-114
    • /
    • 2005
  • This paper introduces the current status of total overseas packaging industries. The total market of the world packaging industry reached over 500 billion dollars in 2002. The top nations for the packaging industry were U.S. at about 27 percent, the countries of Western Europe at about 27%, Japan at about 14%. In terms of packaging materials, the overall market rate for paper, plastics, and metal parts in world packaging industry was 84%. Also, the market rate of glass, packaging machine, and others was only 5-6%. Among EU nations, Germany showed largest packaging consumption of 23 percent in 2000, and consumed about 17,125,814 ton of packaging materials yearly. For paper and paperboard cartons, the percentage used for the packaging consumption was about 39.4%. The consumption rate of plastic and glass packaging was approximately 14.6% and 23.7% respectively. For metal packaging the consumption rate was about 5.9%. In Japan, the production rate of packaging materials was decreased slowly at paper, metal, glass, and wood areas, but plastic packaging showed a constant rate of growth. In China, total production of packaging industry amounted to about 33.7 billion in 2003. The paper packaging in china was a remarkable production rate of 32%. The production rate of plastic and printing packaging was 28% and 20% respectively. The rate of packaging industry for printing in China was much higher than that in other countries.

  • PDF

${\cdot}$ 저가 집약형 플렉소 인쇄기의 블랭킷 실린더 제어에 관한 연구 (A Study for Blanket Cylinder Control of Middle/Low Priced CI Type Flexo-Printing Machine)

  • 신종순;강영립;이상주
    • 한국인쇄학회지
    • /
    • 제21권2호
    • /
    • pp.11-20
    • /
    • 2003
  • In Flexo printing machine, it's operated with combination of blanket cylinder and cylinder. The blanket cylinder has some number of grooves to attach the blanket on surface. In case of operating the printing machine, it has generate mechanical noise when the two cylinders encounter with the grooves. So, in this study, we developed a mechanical noise control algorithm of printing in servo control system. Then we have reduced the mechanical noise with control of servo actuator.

  • PDF

캘리코 프린팅 패턴에 관한 역사적 고찰 (Historical Perspective of Calico Printing Pattern)

  • 구희경
    • 한국의상디자인학회지
    • /
    • 제5권3호
    • /
    • pp.89-97
    • /
    • 2003
  • This study is to review the development of calico printing pattern design for fabric through historical perspective. Calico is a cotton cloth named from Calicut, a city of India. It was first brought to England by the East India company in 1621. Although the name is generally given and plain white cotton cloth, and in America it is applied to small-scale printed cottons, today it applies to indian cotton cloth, coarse or fine, woven with colored geometrical large-scale and small-scale patterns, painted or printed. Therefore this paper proposes the classification and feature extraction of calico printing pattern from the early of 16th century to 21th century. The results of this study can be effectively applied to develop competitive calico pattern design in domestic cotton textile industry.

  • PDF

CNN 알고리즘을 이용한 인공지지체의 3D프린터 출력 시 실시간 출력 불량 탐지 시스템에 관한 연구 (A Study on Real-Time Defect Detection System Using CNN Algorithm During Scaffold 3D Printing)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.125-130
    • /
    • 2021
  • Scaffold is used to produce bio sensor. Scaffold is required high dimensional accuracy. 3D printer is used to manufacture scaffold. 3D printer can't detect defect during printing. Defect detection is very important in scaffold printing. Real-time defect detection is very necessary on industry. In this paper, we proposed the method for real-time scaffold defect detection. Real-time defect detection model is produced using CNN(Convolution Neural Network) algorithm. Performance of the proposed model has been verified through evaluation. Real-time defect detection system are manufactured on hardware. Experiments were conducted to detect scaffold defects in real-time. As result of verification, the defect detection system detected scaffold defect well in real-time.

SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로- (Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure-)

  • 송하영
    • 패션비즈니스
    • /
    • 제23권3호
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.

천연염료 실크스크린 기법의 텍스타일 디자인 제작에 관한 연구 (A Study on Eco-Friendly Jaquard Fabric Design Utilizing Natural Dyed Silk Screen Printing)

  • 이애자
    • 한국의류산업학회지
    • /
    • 제18권4호
    • /
    • pp.412-423
    • /
    • 2016
  • This paper explores the possibility, and suggests an experimental procedure, of industrial application of traditional textile design techniques, such as hand silkprinting and natural dyeing. Theoretical and traditional background of this study is William Morris and his followers' Arts and Crafts Movement from the late 19th century to the early 20th century, which laid the philosophical as well as technical foundations of modern textile design tradition. Based on the basic understanding of the design philosophy, and starting from the design techniques of Morris and his successors, I made some experimental and systematic color plans reflecting and exploiting the physical traits and structure of jacquard woven silk material fabrics. And I applied hand silkscreen printing techniques on the jacquard silk fabrics of my own making, while testing various color combinations of natural dyes. After finishing final processing of design samples, I could get textile design products which met the criteria of my original expectation, i.e., eco-friendly and aesthetic design samples that can also be produced in automatized mass production system of contemporary textile industry. The conclusion of this experimental study is that I can expect the natural dyeing techniques, jacquard silk fabrics design techniques, silkprinting techniques, and the basic processes used in this study to be safely applied for contemporary commercial textile industry utilizing automatized silkscreen printing system and digital printing devices.

Mass Customization in the Apparel Industry using New Technologies

  • Kim, Jungeun;Lee, Khmhee
    • The International Journal of Costume Culture
    • /
    • 제5권1호
    • /
    • pp.14-25
    • /
    • 2002
  • The purpose of this study is to define mass customization in the apparel industry and to discover, the apparel industry's potential to deliver customized apparel products. Different from product-centered mass Production, mass customization is focusing on customers' unique needs. The goal of mass customization is for customers to find exactly what they want at a reasonable price. Using new technologies such as 3-D body scanning and digital printing, mass customization can give customers customfit and personalized garments. Mass customization can satisfy a customer in terms of personalization, fit and design. Adoption of mass customization will open new opportunities for the apparel manufacturer of the future. Mass customization is a strategy that apparel manufacturers should consider for their goals.

  • PDF

3D 프린팅의 교육적 활용 방안 연구 : 창의적 디자인 모델 기반 수업 (A Study on Educational Utilization of 3D Printing : Creative Design Model-based Class)

  • 최형신;유미리
    • 정보교육학회논문지
    • /
    • 제19권2호
    • /
    • pp.167-174
    • /
    • 2015
  • 최근 3D 프린팅의 영향력에 대한 관심의 증가와 3D 프린터의 저가 공급으로 인해 가까운 장래에 공교육 현장에도 3D 프린터가 교육 기자재로 도입될 것이다. 미래창조과학부와 산업통상자원부 합동으로 3D 프린팅 산업 발전 전략을 마련하여 초 중등의 교육과정에 3D 프린팅 개념 이해와 실습 내용을 포함한 시범 교육을 수행하도록 하고 있다. 그러나 교육 현장에 3D 프린터가 도입될 것이라고 하지만 이에 대응하기 위한 교육 내용과 방법에 대한 연구는 미흡한 실정이다. 이에 본 연구에서는 3D 프린터를 사용하기 위해 선결 능력인 3D 모델링 능력을 위한 다양한 3D 모델링 소프트웨어를 분석하고 이를 초등교과에 도입할 수 있도록 창의적 디자인 모델(creative design spiral)에 기반한 교육 프로그램을 고안하고 적용하였다.