• Title/Summary/Keyword: Printed electronics

Search Result 630, Processing Time 0.027 seconds

The Design on a Wideband Active Printed Dipole Antenna using a Balanced Amplifier

  • Lee, Sung-Ho;Kwon, Se-Woong;Lee, Byoung-Moo;Yoon, Young-Joong;Song, Woo-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.112-116
    • /
    • 2002
  • In this paper, the active integrated antenna(AIA) using a wideband printed dipole antenna and a balanced amplifier is designed and fabricated. The proposed active printed dipole antenna has characteristics of easy matching, wide bandwidth and higher output power To feed balanced signal to printed dipole, a Wilkinson power divider and delay lines are used. The measured result shows that, at 6 GHz center frequency, the impedance bandwidth is 22 % (VSWR < 2), 3 dB gain bandwidth is 28 %, the maximum gain is 14.77 dBi, and output power at P1 dB point is 23 dBm.

Functional Inks for Printed Electronics

  • Choi, Young-Min;Jeong, Sun-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.63.1-63.1
    • /
    • 2012
  • In recent years, the functional inks for printed electronics that can be combined with a variety of printing techniques have attracted increasingly significant interest for use in low cost, large area, high performance integrated electronics and microelectronics. In particular, the development of solution-processable conductor, semiconductor and insulator materials is of great importance as such materials have decisive impacts on the electrical performance of various electronic devices, and, therefore, need to meet various requirements including solution processability, high electrical performance, and environmental stability. Semiconductor inks such as IGO, CIGS are synthesized by chemical solution method and microwave reaction method for TFT and solar cell application. Fine circuit pattern with high conductivity, which is valuable for flexible electrode for PCB and TSP devices, can be printed with highly concentrated and stabilized conductor inks such as silver and copper. Solution processed insulator such as polyimide derivatives can be use to all printed TFT device. Our research results of functional inks for printed electronics provide a recent trends and issues on this area.

  • PDF

Gravure Offset Printing for Printed Electronics (인쇄전자를 위한 그라비아 옵셋 인쇄)

  • Kim, Chung-Hwan;Choi, Byung-Oh;Ryu, Byung-Soon;Kim, Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.96-102
    • /
    • 2008
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology, with low cost and high productivity, can make it possible to produce printed electronics such as TFT, solar cell, RFID Tag, printed battery, and so on. In this study, apparatus of gravure-offset printing are developed for fine line-width/gap printing and the results obtained from the apparatus shows that it is possible to make around 20 micro-meter line-width/gap printing patterns. The roll-to-roll printing system for fine line-width printing based on primary experiment is presented. The printing results obtained from the system shows around 30 micro-meter line-width/gap printing patterns.

Effect of 3D Printed Spiral Antenna Design on Inductive Coupling Wireless Power Transmission System (3차원 프린팅을 이용한 무선전력전송의 안테나 설계 특성 규명)

  • Kim, Ji-Sung;Park, Min-Kyu;Lee, Ho;Kim, Chiyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.73-80
    • /
    • 2020
  • The 3D printing of electronics has been a major application topics in additive manufacturing technology for a decade. In this paper, wireless power transfer (WPT) technology for 3D electronics is studied to supply electric power to its inner circuit. The principle of WPT is that electric power is induced at the recipient antenna coil under an alternating magnetic field. Importantly, the efficiency of WPT does rely on the design of the antenna coil shape. In 3D printed electronics, a flat antenna that can be placed on the printed plane within a layer of a 3D printed part is used, but provided a different antenna response compared to that of a conventional PCB antenna for NFC. This paper investigates the WPT response characteristics of a WPT antenna for 3D printed electronics associated with changes in its design elements. The effects of changing the antenna curvature and the gap between the wires were analyzed through experimental tests.

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • Kim, Dong-Su;Kim, Chung-Hwan;Kim, Myeong-Seop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

3D Printed Electronics Research Trend (3차원 인쇄기술을 이용한 전자소자 연구 동향)

  • Park, Yea-Seol;Lee Ju-Yong;Kang, Seung-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • 3D printing, which designs product in three dimensions, draws attention as a technology that will lead the future for it dramatically shortens time for production without assembly, no matter how complex the structure is. The paper studies the latest researches of 3D-printed electronics and introduces papers studied electronics components, power supply, circuit interconnection and 3D-printed PCBs' applications. 3D-printed electronics showed possibility to simplify facilities and personalize electric devices by providing one-stop printing process of electronic components, soldering, stacking, and even encapsulation.

Methods and Development Status of Equipment for Printed Electronics (인쇄전자 기술 및 장비개발 현황)

  • Shin, Dong-Youn
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.1
    • /
    • pp.7-21
    • /
    • 2017
  • Printed Electronics is a relatively new subject where electronics and display appliances are mass-produced by employing low-cost printing techniques with electronic materials suspended in a liquid medium, and many efforts to develop materials, process and equipment to commercialize low-cost electronics and display parts have been made since 2007 in the Republic of Korea. In this work, the development status of printing equipment for printed electronics and display components in the size of a few micrometers and tens of micrometers is briefly introduced.

Improvement of Inverted Hybrid Organic Light-emitting Diodes Properties with Bar-coating Process (바코팅 공정을 이용한 유기 발광 다이오드 특성 향상)

  • Kwak, Sun-Woo;Yu, Jong-Su;Han, Hyun-Suk;Kim, Jung-Su;Lee, Taik-Min;Kim, Inyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.589-595
    • /
    • 2013
  • Solution processed conjugated molecules enable to manufacture various electronic devices by unconventional and cost effective patterning methods as screen or gravure printing. Spin-coating is the most popularly used method to form conjugated polymeric film for various electronic devices. The coating method has certain disadvantages such as a large amount of unwanted wastes, difficulty forming a film with a large area, and impossible to apply roll-to-roll manufacturing. We present here a promising alternative coating method, bar-coating for conjugated polymer film and OLED with the bar coated light emitting layer. In this papers, we show atomic force microscope images of spin- and bar-coated Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) films on substrate. The bar-coated film showed a slight lower RMS roughness (1.058 [nm]) than spin-coated film (1.767 [nm]). It means the bar-coating is suitable method to form light emitting layers in OLEDs. By using bar-coating process, an OLED obtained with 4.7 [cd/A] in maximum current efficiency.