• Title/Summary/Keyword: Printed circuit winding

Search Result 6, Processing Time 0.019 seconds

Novel Flexible Printed Circuit Windings for a Slotless Linear Motor Design

  • Hsu, Liang-Yi;Yan, Guo-Jhih;Tsai, Mi-Ching
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Linear motors has been developed for factory automation, transportation applications, among other applications. As the trend toward compact sizes in micro electronic products progresses, the required motor drives in these applications need to be downsized with increased power densities. It appears that the winding of miniature linear motors is the most awkward part to be scaled down from conventional motor designs when miniaturizing. This paper presents an alternative design for slotless linear motors. A novel flexible printed circuit winding has been applied to obtain a simplified but qualified result. Having explained the prototyping and inspection, a discussion is given to examine the achievement of this study.

Back EMF Design of an AFPM Motor using PCB Winding by Quasi 3D Space Harmonic Analysis Method

  • Jang, Dae-Kyu;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.730-735
    • /
    • 2012
  • This paper presents a method to design the waveform of a back electromotive force (back EMF) of an axial flux permanent magnet (AFPM) motor using printed circuit board (PCB) windings. When the magnetization distribution of permanent magnet (PM) is given, the magnetic field in the air gap region is calculated by the quasi three dimensional (3D) space harmonic analysis (SHA) method. Once the flux density distribution in the winding region is determined, the required shape of the back EMF can be obtained by adjusting the winding distribution. This can be done by modifying the distance between patterns of PCB to control the harmonics in the winding distribution. The proposed method is verified by finite element analysis (FEA) results and it shows the usefulness of the method in eliminating a specific harmonic component in the back EMF waveform of a motor.

Coreless Printed Circuit Board (PCB) Transformers - Fundamental Characteristics and Application Potential

  • Hui S. Y.;Tang S. C.;Chung H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.1-6
    • /
    • 2001
  • In this article, the fundamental concept, characteristics and application potentials of coreless printed-circuit-board (PCB) transformers are described. Coreless PCB transformers do not have the limitations associated with magnetic cores, such as the frequency limitation, magnetic saturation and core losses. In addition, they eliminate the manual winding process and its associated problems, including labor cost, reliability problems and difficulties in ensuring transformer quality in the manufacturing process. The parameters of the printed windings can be precisely controlled in modern PCB technology. Because of the drastic reduction in the vertical dimension, coreless PCB transformers can achieve high power density and are suitable for applications in which stringent height requirements for the circuits have to be met. A transformer's power density of $24W/cm^2$ has been reported in a power conversion application. When used in an isolation amplifier application, coreless PCB transformers tested so far enable the amplifier to achieve a remarkable linear frequency range of 1MHz, which is almost eight times higher than the frequency range of 120kHz in existing Integrated-Circuit products. PCB materials offer extremely high isolation voltage, typically from 15kV to 40kV, which is higher than many other isolation means such as optocouplers. It is envisaged that coreless PCB transformers can replace traditional core-based transformers in some industrial applications. Their application potentials deserve more attention and exploration.

  • PDF

Asymmetric Optical Pick-Up Actuator with PCB-Coil (PCB-Coil을 이용한 비대칭 광픽업 액추에이터)

  • 임장영;신경식;홍구;김진기;전영진;이두환;배원철;이재걸
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.362-365
    • /
    • 2004
  • 'Coil' occupies a much important position in delivering driving force of optical pick-up actuators. Up to now the main stream has been a winding coil type actuator, but actuators using FP-Coil(Fine Pattern Coil) have been considered for the more compacted and simple manufacturing process and have variously spreaded the application fields by product. We have tried to design actuators using PCB-Coil(Printed Circuit Board Coil) which has benefits in terms of price and manufacturing process. Especially this research has two main things those are to reduce the vibration of sub-resonance and to assure the do sensitivity in the performance of asymmetric optical pick-up actuator with PCB-Coil.

  • PDF

Analysis the Performance of Asymmetric Optical Pick-up Actuator with PCB type Coil (PCB형 코일을 이용한 비대칭 광픽업 액추에이터의 성능분석)

  • Shin KyungSik;Hong Goo;Kim JeenGi;Jun YoungJin;Lee DooHwan;Bae WonCheol;Lee JaeKul;Im JangYoeng
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.891-896
    • /
    • 2004
  • 'Coil' occupies very much important position in delivering driving force of optical pick-up actuators. Up to now the main stream has been a winding coil type actuator, but actuators using FP-Coil(fine pattern coil) have been considered for the more compacted and simple manufacturing process and have variously spreaded the application fields by product. We have tried to design actuators using PCB-Coil(printed circuit board coil) which has benefits in terms of price and manufacturing process. Especially this research has two main things to reduce the vibration of sub-resonance and to assure the DC sensitivity among the performances of asymmetric optical pick-up actuator with PCB-Coil.

Construction of Current Sensor Using Hall Sensor and Magnetic Core for the Electric and Hybrid Vehicle (홀소자와 자기코어를 이용한 하이브리드 및 전기자동차용 전류센서 제작)

  • Yeon, Kyoheum;Kim, Sidong;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A current sensor is one of important component which is used for the electrical current measurement during charge and discharge of the battery, and monitoring system of the motor controller in the electric and hybrid vehicle. In this study, we have developed an open loop type current sensor using GaAs Hall sensor and magnetic core has an air gap. The Hall sensor detect magnetic field produced by the current to be measured. The 3 mm air gap core was made by HGO electrical steel sheets after slitting, winding, annealing, molding, and cutting. Developed current sensor shows 0.03 % linearity within DC current range from -400 A to +400 A. Operating temperature range was extended to the range of $-40{\sim}105^{\circ}C$ using temperature compensating electronic circuit. To Improve frequency bandwidth limit due to the air flux of PCB (Printed Circuit Board) and Hall sensor, We employed an air flux compensating loop near Hall sensor or on PCB. Frequency bandwidth of the sensor was 100 kHz when we applied sine wave current of $40A{\cdot}turn$ in the frequency range from 100 Hz to 100 kHz. For the dynamic response time measurement, 5 kHz square wave current of $40A{\cdot}turn$ was applied to the sensor. Response time was calculated time reach to 90 % of saturation value and smaller than $2{\mu}s$.