• 제목/요약/키워드: Principle Component Regression

검색결과 37건 처리시간 0.022초

3-Dimensional Performance Optimization Model of Snatch Weightlifting

  • Moon, Young-Jin;Darren, Stefanyshyn
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.157-165
    • /
    • 2015
  • Object : The goals of this research were to make Performance Enhanced Model(PE) taken the largest performance index (PI) through artificial variation of principle components calculated by principle component analysis for trial data, and to verify the effect through comparing kinematic factors between trial data (Raw) and PE. Method : Ten subjects (5 men, 5 women) were recruited and 80% of their maximal record was considered. The PI is a regression equation. In order to develop PE, we extracted Principle components from trial position data (by Principle Components Analysis (PCA)). Before PCA, we made 17 position data to 3 row matrix according to components. We calculated 3 eigen value (principle components) through PCA. And except Y (medial-lateral direction) component (because motion of Y component is small), principle components of X (anterior-posterior direction) and Z (vertical direction) components were changed as following. Changed principle components = principle components + principle components ${\times}$ k. After changing the each principle component, we reconstructed position data using the changed principle components and calculated performance index (PI). A Paired t-test was used to compare Raw data and Performance Enhanced Model data. The level of statistical significance was set at $p{\leq}0.05$. Result : The PI was significantly increased about 12.9kg at PE ($101.92{\pm}6.25$) when compared to the Raw data ($91.29{\pm}7.10$). It means that performance can be increased by optimizing 3D positions. The difference of kinematic factors as follows : the movement distance of the bar from start to lock out was significantly larger (about 1cm) for PE, the width of anterior-posterior bar position in full phase was significantly wider (about 1.3cm) for PE and the horizontal displacement toward the weightlifter after beginning of descent from maximal height was significantly greater (about 0.4cm) for PE. Additionally, the minimum knee angle in the 2-pull phase was significantly smaller (approximately 2.7cm) for the PE compared to that of the Raw. PE was decided at proximal position from the Raw (origin point (0,0)) of PC variation). Conclusion : PI was decided at proximal position from the Raw (origin point (0,0)) of PC variation). This means that Performance Enhanced Model was decided by similar motion to the Raw without a great change. Therefore, weightlifters could be accept Performance Enhanced Model easily, comfortably and without large stress. The Performance Enhance Model can provide training direction for athletes to improve their weightlifting records.

주성분 분석을 이용한 고객 공정의 불량률 예측 모형 개발 (Development of Prediction Model using PCA for the Failure Rate at the Client's Manufacturing Process)

  • 장윤희;손지욱;이동혁;오창석;이득중;장중순
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권2호
    • /
    • pp.98-103
    • /
    • 2016
  • Purpose: The purpose of this paper is to get a meaningful information for improving manufacturing quality of the products before they are produced in client's manufacturing process. Methods: A variety of data mining techniques have been being used for wide range of industries from process data in manufacturing factories for quality improvement. One application of those is to get meaningful information from process data in manufacturing factories for quality improvement. In this paper, the failure rate at client's manufacturing process is predicted by using the parameters of the characteristics of the product based on PCA (Principle Component Analysis) and regression analysis. Results: Through a case study, we proposed the predicting methodology and regression model. The proposed model is verified through comparing the failure rates of actual data and the estimated value. Conclusion: This study can provide the guidance for predicting the failure rate on the manufacturing process. And the manufacturers can prevent the defects by confirming the factor which affects the failure rate.

빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선 (ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation)

  • 김지운;정재호
    • 한국통신학회논문지
    • /
    • 제29권1C호
    • /
    • pp.65-71
    • /
    • 2004
  • 본 논문은 주성분분석(PCA, Principle Component Analysis) 혹은 독립성분분석(ICA, Independent Principle Component Analysis)를 이용하여 HMM(Hidden Markov Model) 파라메타의 차수를 감소시킴으로써 MLLR(Maximum Likelihood Linear Regression) 화자 적응 알고리즘을 개선하였다. 데이터의 특징을 잘 나타내는 PCA와 ICA를 통해 모델 mixture component의 상관관계를 줄이고 상대적으로 데이터의 분포가 적은 축을 삭제함으로써 추정해야 하는 적응 파라메타의 수를 줄였다. 기존의 MLLR 알고리즘은 SI(Speaker Independent)모델 보다 좋은 인식성능을 나타내기 위해 30초 이상의 적응 데이터가 요구되었고, 반면 제안한 알고리즘은 적응 파라메타의 수를 감소시킴으로써 10초 이상의 적응데이터가 요구되었다. 또한, 36차의 HMM 파라메타는 기존의 MLLR 알고리즘과 비슷한 인식성능을 나다내는 10차의 주성분이나 독릭성분을 사용함으로써 MLLR 알고리즘에서 적응파라메타를 추정할 때 요구되는 연산량을 1/167로 감소시켰다.

Analysis of Linear Regression Model with Two Way Correlated Errors

  • Ssong, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.231-245
    • /
    • 2000
  • This paper considers a linear regression model with space and time data in where the disturbances follow spatially correlated error components. We provide the best linear unbiased predictor for the one way error components. We provide the best linear unbiased predictor for the one way error component model with spatial autocorrelation. Further, we derive two diagnostic test statistics for the assessment of model specification due to spatial dependence and random effects as an application of the Lagrange Multiplier principle.

  • PDF

회귀분석에 의한 TOC 농도 추정 - 오수천 유역을 대상으로 - (Application of Regression Analysis Model to TOC Concentration Estimation - Osu Stream Watershed -)

  • 박진환;문명진;한성욱;이형진;정수정;황경섭;김갑순
    • 환경영향평가
    • /
    • 제23권3호
    • /
    • pp.187-196
    • /
    • 2014
  • The objective of this study is to evaluate and analyze Osu stream watershed water environment system. The data were collected from January 2009 to December 2011 including water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and discharge. The data were used for principle component analysis and factor analysis. The results are as followes. The primary factors obtained from both the principal component analysis and the factor analysis were BOD, COD, TOC, SS and T-P. Once principal component analysis and factor analysis have been performed with the collected data and then the results will be applied to both simple regression model and multiple regression model. The regression model was developed into case 1 using concentrations of water quality parameters and case 2 using delivery loads. The value of the coefficient of determination on case 1 fell between 0.629 and 0.866; this was lower than case 2 value which fell between 0.946 and 0.998. Therefore, case 2 model would be a reliable choice.The coefficient of determination between the estimated figure using data which was developed to the regression model in 2012 and the actual measurement value was over 0.6, overall. It can be safely deduced that the correlation value between the two findings was high. The same model can be applied to get TOC concentrations in future.

주성분분석을 이용한 소프트웨어 개발노력 추정능력 향상 (Improving Estimation Ability of Software Development Effort Using Principle Component Analysis)

  • 이상운
    • 정보처리학회논문지D
    • /
    • 제9D권1호
    • /
    • pp.75-80
    • /
    • 2002
  • Putnam은 소프트웨어 프로젝트에 참여하는 인력이 Rayleigh 분포를 따르는 SLIM 모델을 제시하였다. 이 모델에서 인력분포를 얻기 위해서는 총 개발노력과 개발 난이도를 추정해야 한다. 프로젝트 개발에 참여할 것인지 여부를 결정하기 위해서는 소프트웨어 생명주기의 초기단계에서 이 모수들을 보다 적확히 추정하는 것이 필요하다. Putnam은 시스템 속성들 중 강한 상관관계가 있는 변량을 제거하고 나머지 변량들만으로 총 개발노력과 개발 난이도를 추정하였다. 그러나 통계적 방법에 따라 변량들이 다르게 선택되며 모델의 성능에 차이가 발생한다. 본 논문은 Putnam 방법 대신 주성분분석을 이용하여 최적의 시스템 속성을 선택하였다. 모델의 성능분석 결과 주성분분석 방법이 Putnam의 방법보다 9.85% 성능향상을 보였다. 또한, 제안된 모델은 단순하고 쉽게 구현할 수 있다.

자기 센서진단기능을 가진 지능형 태양추적장치 (An intelligent sun tracker with self sensor diagonosis system)

  • 최현석;현웅근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.452-456
    • /
    • 2002
  • 자연환경에 노출된 센서기반의 제어장치는 센서오류가 발생하게 된다. 본 논문에서는 센서의 오류 보정기능을 갖는 고정밀 태양추적장치를 개발하였다. 다항식회귀분석 (Polynomial Regression)과 주성분 분석(Principal Component Analysis)을 응용하였으며 태양추적장치의 센서를 모델링하고 자체 진단하고 복구하는 방법을 연구하였다. 시스템의 정상동작시의 센서간의 상호관계를 이용한 모델링과 센서 표본값의 주분포 모델인 PCA 모델이 이루어지면 이를 기준으로 센서의 여러 가지 오류를 점검하고 오류센서 신호를 재건을 한다.

  • PDF

To Predict Body Composition of Children and Adolescents by BIA in China

  • Zhang Li-Wei;Zhai Feng-Ying;Yu Wen-Tao;Huang Lei;Wang Hui-Jun
    • Journal of Community Nutrition
    • /
    • 제6권3호
    • /
    • pp.121-124
    • /
    • 2004
  • Objective : The paper aims to provide predictive coefficients via BIA for the assessment of body composition in children and adolescents to serve clinical as well as research purposes. Methods : Body composition via dual-energy x­ray absorptiometry (DXA) and bioelectric impedance as well as other anthropometric index were derived from meaurements on 1026 children and adolescents aged from 6 to 18 years from Beijing City. The best subset regression and principle component analysis were adopted to build the predictive coefficients with the logarithm of body composition via DXA as response variable. Results : Condition index ${\varphi}$ of fat-free mass multiple linear regression achieves 113.49 and 91.18 for males and females respectively, demonstrating severe multicollinearity among anthropometric indexes in children and adolescents. BIA predictive coefficients base on the best subset regression and principle component analysis boast a content predictive value for lean mass ($r^2$ = 0.9697 and 0.9664 for boys and girls respectively, p < 0.0001) and for Fat$\%$ ($r^2$ = 0.7705 and 0.6959 for boys and girls respectively, p < 0.0001). Conclusions : BIA method is applicable for the prediction of body composition for children and adolescents.

한국형 기동무기체계 양산비 비용추정관계식 개발에 관한 연구 (A Study on Developing a CER Using Production Cost Data in Korean Maneuver Weapon System)

  • 이두현;김각규
    • 한국경영과학회지
    • /
    • 제39권3호
    • /
    • pp.51-61
    • /
    • 2014
  • In this paper, we deal with developing a cost estimation relationships (CER) for Korean maneuverable weapons systems using historical production cost. To develop the CER, we collected the historical data of the production cost of four tanks and five armored vehicles. We also analyzed the Required Operational Capability (ROC) of the weapons systems and chose cost drivers that can compare operational capabilities of the weapons systems We used Forward selection, Backward selection, Stepwise Regression and $R^2$ selection as the cost drivers which have the greatest influence with the dependent variables. And we used Principle Component Regression, Robust Regression and Weighted Regression to deal with multicollinearity and outlier among the data to develop a more appropriate CER. As a result, we were able to develop a production cost CER for Korean maneuverable weapons systems that have the lowest cost errors. Thus, this research is meaningful in terms of developing a CER based on Korean original cost data without foreign data and these methods will contribute to developing a Korean cost analysis program in the future.