• Title/Summary/Keyword: Principle Component Regression

Search Result 37, Processing Time 0.03 seconds

3-Dimensional Performance Optimization Model of Snatch Weightlifting

  • Moon, Young-Jin;Darren, Stefanyshyn
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.157-165
    • /
    • 2015
  • Object : The goals of this research were to make Performance Enhanced Model(PE) taken the largest performance index (PI) through artificial variation of principle components calculated by principle component analysis for trial data, and to verify the effect through comparing kinematic factors between trial data (Raw) and PE. Method : Ten subjects (5 men, 5 women) were recruited and 80% of their maximal record was considered. The PI is a regression equation. In order to develop PE, we extracted Principle components from trial position data (by Principle Components Analysis (PCA)). Before PCA, we made 17 position data to 3 row matrix according to components. We calculated 3 eigen value (principle components) through PCA. And except Y (medial-lateral direction) component (because motion of Y component is small), principle components of X (anterior-posterior direction) and Z (vertical direction) components were changed as following. Changed principle components = principle components + principle components ${\times}$ k. After changing the each principle component, we reconstructed position data using the changed principle components and calculated performance index (PI). A Paired t-test was used to compare Raw data and Performance Enhanced Model data. The level of statistical significance was set at $p{\leq}0.05$. Result : The PI was significantly increased about 12.9kg at PE ($101.92{\pm}6.25$) when compared to the Raw data ($91.29{\pm}7.10$). It means that performance can be increased by optimizing 3D positions. The difference of kinematic factors as follows : the movement distance of the bar from start to lock out was significantly larger (about 1cm) for PE, the width of anterior-posterior bar position in full phase was significantly wider (about 1.3cm) for PE and the horizontal displacement toward the weightlifter after beginning of descent from maximal height was significantly greater (about 0.4cm) for PE. Additionally, the minimum knee angle in the 2-pull phase was significantly smaller (approximately 2.7cm) for the PE compared to that of the Raw. PE was decided at proximal position from the Raw (origin point (0,0)) of PC variation). Conclusion : PI was decided at proximal position from the Raw (origin point (0,0)) of PC variation). This means that Performance Enhanced Model was decided by similar motion to the Raw without a great change. Therefore, weightlifters could be accept Performance Enhanced Model easily, comfortably and without large stress. The Performance Enhance Model can provide training direction for athletes to improve their weightlifting records.

Development of Prediction Model using PCA for the Failure Rate at the Client's Manufacturing Process (주성분 분석을 이용한 고객 공정의 불량률 예측 모형 개발)

  • Jang, Youn-Hee;Son, Ji-Uk;Lee, Dong-Hyuk;Oh, Chang-Suk;Lee, Duek-Jung;Jang, Joongsoon
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.98-103
    • /
    • 2016
  • Purpose: The purpose of this paper is to get a meaningful information for improving manufacturing quality of the products before they are produced in client's manufacturing process. Methods: A variety of data mining techniques have been being used for wide range of industries from process data in manufacturing factories for quality improvement. One application of those is to get meaningful information from process data in manufacturing factories for quality improvement. In this paper, the failure rate at client's manufacturing process is predicted by using the parameters of the characteristics of the product based on PCA (Principle Component Analysis) and regression analysis. Results: Through a case study, we proposed the predicting methodology and regression model. The proposed model is verified through comparing the failure rates of actual data and the estimated value. Conclusion: This study can provide the guidance for predicting the failure rate on the manufacturing process. And the manufacturers can prevent the defects by confirming the factor which affects the failure rate.

ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation (빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선)

  • Kim, Ji-Un;Chung, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.65-71
    • /
    • 2004
  • We improved the MLLR speaker adaptation algorithm with reduction of the order of HMM parameters using PCA(Principle Component Analysis) or ICA(Independent Component Analysis). To find a smaller set of variables with less redundancy, we adapt PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible, minimize the correlations between data elements, and remove the axis with less covariance or higher-order statistical independencies. Ordinary MLLR algorithm needs more than 30 seconds adaptation data to represent higher word recognition rate of SD(Speaker Dependent) models than of SI(Speaker Independent) models, whereas proposed algorithm needs just more than 10 seconds adaptation data. 10 components for ICA and PCA represent similar performance with 36 components for ordinary MLLR framework. So, compared with ordinary MLLR algorithm, the amount of total computation requested in speaker adaptation is reduced by about 1/167 in proposed MLLR algorithm.

Analysis of Linear Regression Model with Two Way Correlated Errors

  • Ssong, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.231-245
    • /
    • 2000
  • This paper considers a linear regression model with space and time data in where the disturbances follow spatially correlated error components. We provide the best linear unbiased predictor for the one way error components. We provide the best linear unbiased predictor for the one way error component model with spatial autocorrelation. Further, we derive two diagnostic test statistics for the assessment of model specification due to spatial dependence and random effects as an application of the Lagrange Multiplier principle.

  • PDF

Application of Regression Analysis Model to TOC Concentration Estimation - Osu Stream Watershed - (회귀분석에 의한 TOC 농도 추정 - 오수천 유역을 대상으로 -)

  • Park, Jinhwan;Moon, Myungjin;Han, Sungwook;Lee, Hyungjin;Jung, Soojung;Hwang, Kyungsup;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.187-196
    • /
    • 2014
  • The objective of this study is to evaluate and analyze Osu stream watershed water environment system. The data were collected from January 2009 to December 2011 including water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and discharge. The data were used for principle component analysis and factor analysis. The results are as followes. The primary factors obtained from both the principal component analysis and the factor analysis were BOD, COD, TOC, SS and T-P. Once principal component analysis and factor analysis have been performed with the collected data and then the results will be applied to both simple regression model and multiple regression model. The regression model was developed into case 1 using concentrations of water quality parameters and case 2 using delivery loads. The value of the coefficient of determination on case 1 fell between 0.629 and 0.866; this was lower than case 2 value which fell between 0.946 and 0.998. Therefore, case 2 model would be a reliable choice.The coefficient of determination between the estimated figure using data which was developed to the regression model in 2012 and the actual measurement value was over 0.6, overall. It can be safely deduced that the correlation value between the two findings was high. The same model can be applied to get TOC concentrations in future.

Improving Estimation Ability of Software Development Effort Using Principle Component Analysis (주성분분석을 이용한 소프트웨어 개발노력 추정능력 향상)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.75-80
    • /
    • 2002
  • Putnam develops SLIM (Software LIfecycle Management) model based upon the assumption that the manpower utilization during software project development is followed by a Rayleigh distribution. To obtain the manpower distribution, we have to be estimate the total development effort and difficulty ratio parameter. We need a way to accurately estimate these parameters early in the requirements and specification phase before investment decisions have to be made. Statistical tests show that system attributes are highly correlation (redundant) so that Putnam discards one and get a parameter estimator from the other attributes. But, different statistical method has different system attributes and presents different performance. To select the principle system attributes, this paper uses the principle component analysis (PCA) instead of Putnam's method. The PCA's results improve a 9.85 percent performance more than the Putnam's result. Also, this model seems to be simple and easily realize.

An intelligent sun tracker with self sensor diagonosis system (자기 센서진단기능을 가진 지능형 태양추적장치)

  • 최현석;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.452-456
    • /
    • 2002
  • The sensor based control system has some sensor fault while operating in the field. In this paper, a sensor fault detection and reconstruction system for a sun tracking controller has been researched by using polynomial regression and principle component analysis approach. The developed sun tracking system controls tow actuators with sensor based mechanism as on-line control and sun orbit information as off-line control, alternatively. To show the validity of the developed system, several experiments were illustrated.

  • PDF

To Predict Body Composition of Children and Adolescents by BIA in China

  • Zhang Li-Wei;Zhai Feng-Ying;Yu Wen-Tao;Huang Lei;Wang Hui-Jun
    • Journal of Community Nutrition
    • /
    • v.6 no.3
    • /
    • pp.121-124
    • /
    • 2004
  • Objective : The paper aims to provide predictive coefficients via BIA for the assessment of body composition in children and adolescents to serve clinical as well as research purposes. Methods : Body composition via dual-energy x­ray absorptiometry (DXA) and bioelectric impedance as well as other anthropometric index were derived from meaurements on 1026 children and adolescents aged from 6 to 18 years from Beijing City. The best subset regression and principle component analysis were adopted to build the predictive coefficients with the logarithm of body composition via DXA as response variable. Results : Condition index ${\varphi}$ of fat-free mass multiple linear regression achieves 113.49 and 91.18 for males and females respectively, demonstrating severe multicollinearity among anthropometric indexes in children and adolescents. BIA predictive coefficients base on the best subset regression and principle component analysis boast a content predictive value for lean mass ($r^2$ = 0.9697 and 0.9664 for boys and girls respectively, p < 0.0001) and for Fat$\%$ ($r^2$ = 0.7705 and 0.6959 for boys and girls respectively, p < 0.0001). Conclusions : BIA method is applicable for the prediction of body composition for children and adolescents.

A Study on Developing a CER Using Production Cost Data in Korean Maneuver Weapon System (한국형 기동무기체계 양산비 비용추정관계식 개발에 관한 연구)

  • Lee, Doo-Hyun;Kim, Gak-Gyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.3
    • /
    • pp.51-61
    • /
    • 2014
  • In this paper, we deal with developing a cost estimation relationships (CER) for Korean maneuverable weapons systems using historical production cost. To develop the CER, we collected the historical data of the production cost of four tanks and five armored vehicles. We also analyzed the Required Operational Capability (ROC) of the weapons systems and chose cost drivers that can compare operational capabilities of the weapons systems We used Forward selection, Backward selection, Stepwise Regression and $R^2$ selection as the cost drivers which have the greatest influence with the dependent variables. And we used Principle Component Regression, Robust Regression and Weighted Regression to deal with multicollinearity and outlier among the data to develop a more appropriate CER. As a result, we were able to develop a production cost CER for Korean maneuverable weapons systems that have the lowest cost errors. Thus, this research is meaningful in terms of developing a CER based on Korean original cost data without foreign data and these methods will contribute to developing a Korean cost analysis program in the future.