• Title/Summary/Keyword: Principle Component Analysis : PCA

Search Result 182, Processing Time 0.024 seconds

On the Noise Robustness of Multilayer Perceptrons (다층퍼셉트론의 잡음 강건성)

  • 오상훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.213-217
    • /
    • 2003
  • In this paper, we analysize the noise robustness of MLPs(Multilayer perceptrons). Also, as a preprocessing stage of MLPs to improve noise robustness, we consider the ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise redunction effect using PCA or ICA, we verify the noise robustness of MLPs through handwritten-digit recognition simulations.

  • PDF

Leak Detection in a Water Pipe Network Using the Principal Component Analysis (주성분 분석을 이용한 상수도 관망의 누수감지)

  • Park, Suwan;Ha, Jaehong;Kim, Kimin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.276-276
    • /
    • 2018
  • In this paper the potential of the Principle Component Analysis(PCA) technique that can be used to detect leaks in water pipe network blocks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study. The algorithms were designed to extract a partial set of flow data from the original 24 hour flow data so that the variability of the flows in the determined partial data set are minimal. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The results showed that the effectiveness of detecting leaks may improve by applying the developed algorithm. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks in real-world water pipe networks.

  • PDF

A study on the design of fault diagnostic system based on PCA (PCA-기반 고장 진단 시스템 설계에 관한 연구)

  • Kim, Sung-Ho;Lee, Young-Sam;Han, Yoon-Jong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.600-605
    • /
    • 2003
  • PCA(Principle Component Analysis) has emerged as a useful tool for process monitoring and fault diagnosis. The general approach requires the user to identify the root cause by interpreting the residual or principle components. This could be tedious and often impossible for a large process. In this paper, PCA scheme is combined with the FCM-based fault diagnostic algorithm to enhance the diagnostic results. The implementation of the FCM-based fault diagnostic system by using PCA is done and its application is illustrated on the two-tank system.

ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation (빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선)

  • Kim, Ji-Un;Chung, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.65-71
    • /
    • 2004
  • We improved the MLLR speaker adaptation algorithm with reduction of the order of HMM parameters using PCA(Principle Component Analysis) or ICA(Independent Component Analysis). To find a smaller set of variables with less redundancy, we adapt PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible, minimize the correlations between data elements, and remove the axis with less covariance or higher-order statistical independencies. Ordinary MLLR algorithm needs more than 30 seconds adaptation data to represent higher word recognition rate of SD(Speaker Dependent) models than of SI(Speaker Independent) models, whereas proposed algorithm needs just more than 10 seconds adaptation data. 10 components for ICA and PCA represent similar performance with 36 components for ordinary MLLR framework. So, compared with ordinary MLLR algorithm, the amount of total computation requested in speaker adaptation is reduced by about 1/167 in proposed MLLR algorithm.

HisCoM-PCA: software for hierarchical structural component analysis for pathway analysis based using principal component analysis

  • Jiang, Nan;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.11.1-11.3
    • /
    • 2020
  • In genome-wide association studies, pathway-based analysis has been widely performed to enhance interpretation of single-nucleotide polymorphism association results. We proposed a novel method of hierarchical structural component model (HisCoM) for pathway analysis of common variants (HisCoM for pathway analysis of common variants [HisCoM-PCA]) which was used to identify pathways associated with traits. HisCoM-PCA is based on principal component analysis (PCA) for dimensional reduction of single nucleotide polymorphisms in each gene, and the HisCoM for pathway analysis. In this study, we developed a HisCoM-PCA software for the hierarchical pathway analysis of common variants. HisCoM-PCA software has several features. Various principle component scores selection criteria in PCA step can be specified by users who want to summarize common variants at each gene-level by different threshold values. In addition, multiple public pathway databases and customized pathway information can be used to perform pathway analysis. We expect that HisCoM-PCA software will be useful for users to perform powerful pathway analysis.

An Analysis of Noise Robustness for Multilayer Perceptrons and Its Improvements (다층퍼셉트론의 잡음 강건성 분석 및 향상 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • In this paper, we analyse the noise robustness of MLPs(Multilayer perceptrons) through deriving the probability density function(p.d.f.) of output nodes with additive input noises and the misclassification ratio with the integral form of the p.d.f. functions. Also, we propose linear preprocessing methods to improve the noise robustness. As a preprocessing stage of MLPs, we consider ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise reduction effect using PCA or ICA in the viewpoints of SNR(Singal-to-Noise Ratio), we verify the preprocessing effects through the simulations of handwritten-digit recognition problems.

Study on the Development of effective data transmission Scheme based on Wavelet and PCA (Wavelet 과 PCA 기법을 이용한 효율적 데이터 전송기법 개발에 관한 연구)

  • 육의수;한윤종;김성호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.525-528
    • /
    • 2004
  • 최근 인터넷 및 무선 통신기술의 광범위한 보급으로 인해 현장 계측 데이터 등과 같은 중요 데이터를 인터넷을 통해 실시간으로 수신 가능케 하는 다양한 형태의 웹 기반 원격 모니터링 시스템이 설계되고 있다. 이러한 웹 모니터링 시스템은 기본적으로 짧은 주기마다 측정된 데이터를 원격의 서버로 전송하는 것이 바람직하나 과도한 통신비 문제로 인해 효율적인 시스템 운영이 어렵다는 문제점을 갖는다. 따라서 본 연구에서는 측정데이터의 변화를 효율적으로 검출할 수 있는 PCA(Principle Component Analysis) 기법과 데이터 압축에 탁월한 특성을 갖는 wavelet 기법을 융합한 새로운 형태의 웹 기반 원격모니터링용 데이터 전송기법을 제안하고 실제 데이터에 적용하여 봄으로써 제안된 기법의 유용성을 확인하고자 한다.

  • PDF

Face recognition rate comparison using Principal Component Analysis in Wavelet compression image (Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교)

  • 박장한;남궁재찬
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.5
    • /
    • pp.33-40
    • /
    • 2004
  • In this paper, we constructs face database by using wavelet comparison, and compare face recognition rate by using principle component analysis (Principal Component Analysis : PCA) algorithm. General face recognition method constructs database, and do face recognition by using normalized size. Proposed method changes image of normalized size (92${\times}$112) to 1 step, 2 step, 3 steps to wavelet compression and construct database. Input image did compression by wavelet and a face recognition experiment by PCA algorithm. As well as method that is proposed through an experiment reduces existing face image's information, the processing speed improved. Also, original image of proposed method showed recognition rate about 99.05%, 1 step 99.05%, 2 step 98.93%, 3 steps 98.54%, and showed that is possible to do face recognition constructing face database of large quantity.

An Intrusion Detection System Using Principle Component Analysis and Time Delay Neural Network (PCA와 TDNN을 이용한 비정상 패킷탐지)

  • Jung, Sung-Yoon;Kang, Byung-Doo;Kim, Sang-Kyoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.285-288
    • /
    • 2003
  • 기존의 침입탐지 시스템은 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 하고, 그 규칙과 완전히 매칭되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis ; 이하 PCA)과 시간지연신경망(Time Delay Neural Network ; 이하 TDNN)을 이용한 침입탐지 시스템을 제안한다. 패킷은 PCA를 이용하여 주성분을 결정하고 패킷이미지패턴으로 만든다. 이 연속된 패킷이미지패턴을 시간지연신경망의 학습패턴으로 사용한다.

  • PDF