• 제목/요약/키워드: Principal component method

검색결과 982건 처리시간 0.032초

영 평균과 주요성분분석에 의한 얼굴인식 (Face Recognition by Using Zero Mean and Principal Component Anaysis)

  • 조용현
    • 한국산업융합학회 논문집
    • /
    • 제8권4호
    • /
    • pp.221-226
    • /
    • 2005
  • This paper presents a hybrid method for recognizing the faces by using zero mean and principal component analysis. Zero mean is applied to reduce the 1st order statistics to data nonlinearities. PCA is also used to derive an orthonormal basis which directly leads to dimensionality reduction, and possibly to feature extraction of face image. The proposed method has been applied to the problems for recognizing the 20 face images(10 persons * 2 scenes) of 324*243 pixels from Yale face database. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.

  • PDF

주성분 분석(PCA)에 의한 항공기 왕복 엔진의 구조 건전도 모니터링 (Structural Health Monitoring of Aircraft Reciprocating Engine Based on Principal Component Analysis (PCA))

  • 김지환;박성은;이형철
    • 항공우주시스템공학회지
    • /
    • 제6권1호
    • /
    • pp.13-18
    • /
    • 2012
  • This paper presents a structural health monitoring method of aircraft reciprocating engine using Principal Component Analysis (PCA) which analyzes vibration expressed by Averaged Normalized Power Spectral Density (ANPSD). Because ANPSD of the rotating shaft is sensitive to the rotating speed, this paper proposes to use a post-processing method of ANPSD is used to reduce the sensitivity. The PCA extracts compressed information from the post-processed ANPSDs and the information means the difference between current and normal cases of the engine. The experimental results demonstrate the feasibility and effectiveness of the proposed method to detect abnormal cases of the engine.

패널요원 수행능력 평가에 사용된 분산분석, 상관분석, 주성분분석 결과의 비교 (Evaluation of Panel Performance by Analysis of Variance, Correlation Analysis and Principal Component Analysis)

  • 김상숙;홍성희;민봉기;신명곤
    • 한국식품과학회지
    • /
    • 제26권1호
    • /
    • pp.57-61
    • /
    • 1994
  • Performance of panelists trained for cooked rice quality was evaluated using analysis of variance, correlation analysis, and principal component analysis. Each method offered different information. Results showed that panleists with high F ratios (p=0.05) did not always have high correlation coefficient (p=0.05) with mean values pooled from whole panel. The results of analysis of variance for the panelists whose performance were extremely good or extremely poor were consistent with those of correlation analysis. Outliers designated by principal component analysis were different from the panelists whose performance was defined as extremely good or extremely poor by analysis of variance and correlation analysis. The results of principal component analysis descriminated the panelists with different scoring range more than different scoring trends depending on the treatments. Our study suggested combination of analysis of variance and correlation analysis provided valid basis for screening panelists.

  • PDF

클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출 (Nonlinear Feature Extraction using Class-augmented Kernel PCA)

  • 박명수;오상록
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.7-12
    • /
    • 2011
  • 본 논문에서는 자료패턴을 분류하기에 적합한 특징을 추출하는 방법인, 클래스가 부가된 커널 주성분분석(class-augmented kernel principal component analysis)를 새로이 제안하였다. 특징추출에 널리 이용되는 부분공간 기법 중, 최근 제안된 클래스가 부가된 주성분분석(class-augmented principal component analysis)은 패턴 분류를 위한 특징을 추출하기 위해 이용되는 선형분류분석(linear discriminant analysis)등에 비해 정확한 특징을 계산상의 문제 없이 추출할 수 있는 기법이다. 그러나, 추출되는 특징은 입력의 선형조합으로 제한되어 자료에 따라 적절한 특징을 추출하기 어려운 경우가 발생한다. 이를 해결하기 위하여 클래스가 부가된 주성분분석에 커널 트릭을 적용하여 비선형 특징을 추출할 수 있는 새로운 부분공간 기법으로 확장하고, 실험을 통하여 성능을 평가하였다.

Results of Discriminant Analysis with Respect to Cluster Analyses Under Dimensional Reduction

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.543-553
    • /
    • 2002
  • Principal component analysis is applied to reduce p-dimensions into q-dimensions ( $q {\leq} p$). Any partition of a collection of data points with p and q variables generated by the application of six hierarchical clustering methods is re-classified by discriminant analysis. From the application of discriminant analysis through each hierarchical clustering method, correct classification ratios are obtained. The results illustrate which method is more reasonable in exploratory data analysis.

Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교 (Face recognition rate comparison using Principal Component Analysis in Wavelet compression image)

  • 박장한;남궁재찬
    • 전자공학회논문지CI
    • /
    • 제41권5호
    • /
    • pp.33-40
    • /
    • 2004
  • 본 논문에서는 웨이블릿 압축을 이용하여 얼굴 데이터베이스를 구축하고, 주성분 분석(Principal Component Analysis : PCA) 알고리듬을 이용하여 얼굴 인식률을 비교한다. 일반적인 얼굴인식 방법은 정규화된 크기를 이용하여 데이터베이스를 구축하고, 얼굴 인식을 한다. 제안된 방법은 정규화된 크기(92×112)의 영상을 웨이블릿 압축으로 1단계, 2단계, 3단계로 변환하고 데이터베이스를 구축한다. 입력 영상도 웨이블릿으로 압축하고 PCA 알고리듬으로 얼굴인식 실험을 하였다 실험을 통하여 제안된 방법은 기존 얼굴영상의 정보를 축소할 뿐만 아니라 처리속도도 향상되었다. 또한 제안된 방법은 원본 영상이 99.05%, 1단계 99.05%, 2단계 98.93%, 3단계 98.54% 정도의 인식률을 보였으며, 대량의 얼굴 데이터베이스를 구축하여 얼굴인식을 하는데 가능함을 보였다.

주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발 (Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process)

  • 박재연;이창준
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

Combining Ridge Regression and Latent Variable Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.51-61
    • /
    • 2007
  • Ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLS) are among popular regression methods for collinear data. While RR adds a small quantity called ridge constant to the diagonal of X'X to stabilize the matrix inversion and regression coefficients, PCR and PLS use latent variables derived from original variables to circumvent the collinearity problem. One problem of PCR and PLS is that they are very sensitive to overfitting. A new regression method is presented by combining RR and PCR and PLS, respectively, in a unified manner. It is intended to provide better predictive ability and improved stability for regression models. A real-world data from NIR spectroscopy is used to investigate the performance of the newly developed regression method.

  • PDF

주성분분석과 신경회로망의 융합을 통한 실리콘 웨이퍼의 마이크로 크랙 분류에 관한 연구 (A Study on Classification of Micro-Cracks in Silicon Wafer Through the Fusion of Principal Component Analysis and Neural Network)

  • 서형준;김경범
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.463-470
    • /
    • 2015
  • Solar cell is typical representative of renewable green energy. Silicon wafer contributes about 66 percent to its cost structure. In its manufacturing, micro-cracks are often occurred due to manufacturing process such as wire sawing, grinding and cleaning. Their detection and classification are important to process feedback information. In this paper, a classification method of micro-cracks is proposed, based on the fusion of principal component analysis(PCA) and neural network. The proposed method shows that it gives higher results than single application of two methods, in terms of shape and size classification of micro-cracks.

Simultaneous Determination of (-)-Menthone and (-)-Menthol in Menthae Herba by Gas Chromatography and Principal Component Analysis

  • Kim, Jung-Hoon;Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Natural Product Sciences
    • /
    • 제16권3호
    • /
    • pp.180-184
    • /
    • 2010
  • The simple and accurate method was established for the simultaneous determination of (-)-menthone and (-)-menthol in Menthae herba obtained from Korea and China. A quantitative analysis was performed with a gas chromatography-flame ionization detector and reference compounds were separated on a capillary HP-Innowax column (30 m $\times$ 0.23 mm, 0.50 ${\mu}m$, Agilent, MA, USA). The correlation coefficients of the compounds showed good linearity ($r^2$ > 0.9997) over the linear range. The precision, repeatability and stability showed less than 1.7% of relative standard deviation (RSD) values for two compounds. Recovery rates were within the range of 95.72 - 103.76%. The method was applied successfully to analyze 15 samples of Menthae herba and achieved sufficient and specific separation of reference compounds. The principal component analysis (PCA) exhibited the classification of 15 samples according to their locations of origin.