• Title/Summary/Keyword: Principal component Analysis

Search Result 2,520, Processing Time 0.035 seconds

Performance Improvement of Polynomial Adaline by Using Dimension Reduction of Independent Variables (독립변수의 차원감소에 의한 Polynomial Adaline의 성능개선)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • This paper proposes an efficient method for improving the performance of polynomial adaline using the dimension reduction of independent variables. The adaptive principal component analysis is applied for reducing the dimension by extracting efficiently the features of the given independent variables. It can be solved the problems due to high dimensional input data in the polynomial adaline that the principal component analysis converts input data into set of statistically independent features. The proposed polynomial adaline has been applied to classify the patterns. The simulation results shows that the proposed polynomial adaline has better performances of the classification for test patterns, in comparison with those using the conventional polynomial adaline. Also, it is affected less by the scope of the smoothing factor.

  • PDF

In-situ Endpoint Detection for Dielectric Films Plasma Etching Using Plasma Impedance Monitoring and Self-plasma Optical Emission Spectroscopy with Modified Principal Component Analysis

  • Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.153-153
    • /
    • 2012
  • Endpoint detection with plasma impedance monitoring and self-plasma optical emission spectroscopy is demonstrated for dielectric layers etching processes. For in-situ detecting endpoint, optical-emission spectroscopy (OES) is used for in-situ endpoint detection for plasma etching. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. To overcome these problems, the endpoint was determined by impedance signal variation from I-V monitoring (VI probe) and self-plasma optical emission spectroscopy. In addition, modified principal component analysis was applied to enhance sensitivity for small area etching. As a result, the sensitivity of this method is increased about twice better than that of OES. From plasma impedance monitoring and self-plasma optical emission spectroscopy, properties of plasma and chamber are analyzed, and real-time endpoint detection is achieved.

  • PDF

Telephone Speech Recognition with Data-Driven Selective Temporal Filtering based on Principal Component Analysis

  • Jung Sun Gyun;Son Jong Mok;Bae Keun Sung
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.764-767
    • /
    • 2004
  • The performance of a speech recognition system is generally degraded in telephone environment because of distortions caused by background noise and various channel characteristics. In this paper, data-driven temporal filters are investigated to improve the performance of a specific recognition task such as telephone speech. Three different temporal filtering methods are presented with recognition results for Korean connected-digit telephone speech. Filter coefficients are derived from the cepstral domain feature vectors using the principal component analysis.

  • PDF

Visible and NIR Image Synthesis Using Laplacian Pyramid and Principal Component Analysis (라플라시안 피라미드와 주성분 분석을 이용한 가시광과 적외선 영상 합성)

  • Son, Dong-Min;Kwon, Hyuk-Ju;Lee, Sung-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.133-140
    • /
    • 2020
  • This study proposes a method of blending visible and near infrared images to enhance edge details and local contrast. The proposed method consists of radiance map generation and color compensation. The radiance map is produced by a Laplacian pyramid and a soft mixing method based on principal component analysis. The color compensation method uses the ratio between the composed radiance map and the luminance channel of a visible image to preserve the visible image chrominance. The proposed method has better edge details compared to a conventional visible and NIR image blending method.

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

Evaluation of Slope Condition using Principal Component Analysis (주성분분석법을 이용한 사면 상태 평가)

  • Jung, Soo-Jung;Kim, Tae-Hyung;Kang, Ki-Min;Lee, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.416-422
    • /
    • 2010
  • Estimating condition of geotechnical structures are difficult because of nonlinear time dependency and seasonal effects. Measuring data of structure failure is highly variable in time and space, and a unique approach cannot be defined to model structure movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, this method is advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured.

  • PDF

Joint Channel Coding Based on Principal Component Analysis

  • Hyun, Dong-Il;Lee, Dong-Geum;Park, Young-Cheol;Youn, Dae-Hee;Seo, Jeong-Il
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.831-834
    • /
    • 2010
  • This paper proposes a new joint channel coding algorithm based on principal component analysis. A conventional joint channel coder using passive downmixing undergoes a reduction of both the primary-to-ambient energy ratio (PAR) of the downmix signal and the panning gain ratio of the primary source. The proposed system preserves the PAR of the downmix signal by using active downmixing which reflects spatial characteristic. The proposed system also improves the accuracy of the panning gain ratio estimation. Computer simulations and subjective listening tests verify the performance of the proposed system.

A Study on Classification of Micro-Cracks in Silicon Wafer Through the Fusion of Principal Component Analysis and Neural Network (주성분분석과 신경회로망의 융합을 통한 실리콘 웨이퍼의 마이크로 크랙 분류에 관한 연구)

  • Seo, Hyoung Jun;Kim, Gyung Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.463-470
    • /
    • 2015
  • Solar cell is typical representative of renewable green energy. Silicon wafer contributes about 66 percent to its cost structure. In its manufacturing, micro-cracks are often occurred due to manufacturing process such as wire sawing, grinding and cleaning. Their detection and classification are important to process feedback information. In this paper, a classification method of micro-cracks is proposed, based on the fusion of principal component analysis(PCA) and neural network. The proposed method shows that it gives higher results than single application of two methods, in terms of shape and size classification of micro-cracks.

LMS and LTS-type Alternatives to Classical Principal Component Analysis

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.233-241
    • /
    • 2006
  • Classical principal component analysis (PCA) can be formulated as finding the linear subspace that best accommodates multidimensional data points in the sense that the sum of squared residual distances is minimized. As alternatives to such LS (least squares) fitting approach, we produce LMS (least median of squares) and LTS (least trimmed squares)-type PCA by minimizing the median of squared residual distances and the trimmed sum of squares, in a similar fashion to Rousseeuw (1984)'s alternative approaches to LS linear regression. Proposed methods adopt the data-driven optimization algorithm of Croux and Ruiz-Gazen (1996, 2005) that is conceptually simple and computationally practical. Numerical examples are given.

A Automatic Document Summarization Method based on Principal Component Analysis

  • Kim, Min-Soo;Lee, Chang-Beom;Baek, Jang-Sun;Lee, Guee-Sang;Park, Hyuk-Ro
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.491-503
    • /
    • 2002
  • In this paper, we propose a automatic document summarization method based on Principal Component Analysis(PCA) which is one of the multivariate statistical methods. After extracting thematic words using PCA, we select the statements containing the respective extracted thematic words, and make the document summary with them. Experimental results using newspaper articles show that the proposed method is superior to the method using either word frequency or information retrieval thesaurus.