• Title/Summary/Keyword: Princeton Ocean Model (POM)

Search Result 30, Processing Time 0.027 seconds

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-78
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable to shallow water. The newly developed model is based on both POM (Princeton Ocean Model) for the surge and tide and WAM (WAve Model) for wind-generated waves, but is modified to be applicable to shallow water. In this paper which is the first paper of the two in a sequence, we verified the accuracy and numerical stability of the hydrodynamic part of the model which is responsible for the simulation of Typhoon generated surge and tide. In order to improve the accuracy and numerical stability of the combined model, we modified algorithms responsible for turbulent modeling as well as vertical velocity computation routine of POM. Verification of the model performance had been conducted by comparing numerical simulation results with analytic solutions as well as data obtained from field measurement. The modified POM is shown to be more accurate and numerically stable compare to the existing POM.

On the Circulation in the Jinhae Bay using the Princeton Ocean Model -I. Characteristic in Vertical Tidal Motion-

  • Hong Chul-hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.168-179
    • /
    • 1998
  • Circulation in the Jinhae Bay in the southern sea of Korea is examined using the Princeton Ocean Model (POM) with a free surface in a sigma coordinate, governed by primitive equations. The model well corresponds to the time series of the observed velocities at several layers obtained from a long-term mooring observation. In the residual velocity field of the model, persistent downward flow fields are formed along the central deep regions in the bay, and they are caused by bottom topographic effect. In addition, a comparison between a depth-averaged (2D) model and the POM is given, and a dependance of the results on bottom drag coefficient is also examined.

  • PDF

Numerical Experiments Using Modified POM WAD with Computing Time Saving Technique (계산시간절약기법이 적용된 수정 POM WAD의 수치실험)

  • Park, Il Heum;Choi, Heung Bae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.72-82
    • /
    • 2015
  • In order to effectively and economically apply the previous POM(Princeton Ocean Model) WAD(Wetting And Drying) to the coastal area, the POM WAD was modified such as the water elevation input of tidal harmonics in the open boundaries was included and a CTS(Computing Time Saving) technique was introduced to the model. The modified model was tested to the standing waves in the rectangular bay and the hydraulic experiments for the flow and heat diffusion in the 3D basin. The numerical results showed a good agreement with the analytical solutions of the standing waves and the observed values by the hydraulic experiments, respectively. And also when the modified model with the CTS technique was applied to Gwangyang Bay of Korea, the computing time was decreased by as much as 39.4%.

POM/MICOM Inter-Comparison in Modeling the East Sea Circulation

  • Kim, Kuk-Jin;Seung, Young-Ho;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.161-172
    • /
    • 2001
  • A model-to-model comparison is attempted between Princeton Ocean Model (POM) and Miami Isopycnic Coordinate Ocean Model (MICOM) as a first step to extend our knowledge of models' performances in studying the East Sea circulation. The two models have fundamentally different numerical schemes and boundary conditions imposed on these models are not exactly the same each other. This study indicates that MICOM has a critical weak point in that it does not reproduce the shallow surface currents properly while it handles the thermohaline processes and associated movements of intermediate and deep waters efficiently. It is suggested that the mixed layer scheme needs to be modified so that it can match with inflow boundary conditions in order to reproduce the surface currents properly in MICOM. POM reproduces the surface current pattern better than MICOM, although the surface currents in POM appear to undergo the unrealistic seasonal variation and have exaggeratedly large vertical scale. These defects seem to arise during the process of adapting POM to the East Sea, and removing these defects is left as a future task.

  • PDF

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

Application of POM to the River Flow (POM의 하천 흐름 해석에의 적용)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • During typhoon periods, coastal regions are often directly flooded by typhoon-surges. There are also many cases where coastal regions are inundated by river inundations or dam breaks. However, most studies on coastal flooding by typhoons have been restricted to cases involving the sea. Flooding by river inundation has been excluded in those studies. Usually ocean numerical models are not applied to river flow because the governing equations for ocean flow and river flow are not the same. For a coastal flooding simulation with river inundation, POM, the three-dimensional numerical ocean model, was applied to the popular river flow problems, dam-break problem, and flows over a spillway. The simulated results showed good agreement with other numerical simulations and measured data, suggesting the possibility of using POM in coastal flooding simulations involving direct coastal surges and river inundations.

Simulation of Sea Water Response in Deukryang Bay to Typhoon Using the Princeton Ocean Model

  • Hong, Chul-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.53-63
    • /
    • 1998
  • The Princeton ocean model (POM) with free surface in sigma-coordinate, governed by primitive equations, is used to examine the response of sea water in Deukryang Bay to a typhoon. The model reproduces reasonably well the main features in the wind-driven dynamics due to passing of a typhoon. In response to the wind, the coastal jet develops and the upwelling(or downwelling) occurs dominantly in both sides of the bay. This result implies that there should be an overturn in the bay water with the passing of typhoons. Numerical results of POM are also compared to those of a depth-averaged model. From the comparison, it is postulated that the bottom drag coefficient conventionally used for the two-dimensional flow models is inadequate due to overestimation of the computed current field.

  • PDF

A Study on the behavior of bottom water in water area by using modified POM (개량형 POM을 이용한 수역에서의 저층수의 거동에 관한 연구)

  • Yoon Jong-Sung;Lee Dong-Ken;Kim In-Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.198-210
    • /
    • 2006
  • POM(Princeton Ocean Model) was utilized in this study because it took ${\sigma}-coordinate$ system which could predict the behavior of bottom water. The model has been increasingly applied to costal area although it was initially developed as the ocean flow model. The original POM did not correct computational errors in transformation of ${\sigma}-coordinate$ system. The trying to reduce conversional errors might improve accuracy of flow velocity in vicinities of bottom layer. Therefore, in this study it was proposed to modify the original POM by using error correction method suggested by $Sl{\Phi}rdal$(1997). The modified POM was applied to Young-rang Lake, one of the typical brackish lakes in Korea. It was found that the behavior of bottom water could be well predicted. Thus, it seems that the modified POM can be used as a useful tool to clarify the mechanism of formation and behavior of bottom water including oxygen-deficient water mass.

Development of a Three-Dimensional, Semi-Implicit Hydrodynamic Model with Wetting-and-Drying Scheme (조간대 처리기법을 포함한 3차원 Semi-Implicit 수역학모델 개발)

  • Lee, Kyung-Sun;Park, Kyeong;Oh, Jeong-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Princeton Ocean Model (POM) is modified to construct a three-dimensional, semi-implicit hydro¬dynamic model with a wetting-and-drying scheme. The model employs semi-implicit treatment of the barotropic pressure gradient terms and the vertical mixing terms in the momentum equations, and the velocity divergence term in the vertically-integrated continuity equation. Such treatment removes the external mode and thus the mode splitting scheme in POM, allowing the semi-implicit model to use a larger time step. Applied to hypothetical systems, both the semi-implicit model and POM give nearly the same results. The semi-implicit model, however, runs approximately 4.4 times faster than POM showing its improved computational efficiency. Applied to a hypothetical system with intertidal flats, POM employing the mode splitting scheme produces noises at the intertidal flats, that propagate into the main channel resulting in unstable current velocities. Despite its larger time step, the semi-implicit model gives stable current velocities both at the intertidal flats and main channel. The semi-implicit model when applied to Kyeonggi Bay gives a good reproduction of the observed tides and tidal currents throughout the modeling domain, demonstrating its prototype applicability.

  • PDF

Development and Verification of NEMO based Regional Storm Surge Forecasting System (NEMO 모델을 이용한 지역 폭풍해일예측시스템 개발 및 검증)

  • La, Nary;An, Byoung Woong;Kang, KiRyong;Chang, Pil-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.373-383
    • /
    • 2020
  • In this study we established an operational storm-surge system for the northwestern pacific ocean, based on the NEMO (Nucleus for European Modeling of the Ocean). The system consists of the tide and the surge models. For more accurate storm surge prediction, it can be completed not only by applying more precise depth data, but also by optimal parameterization at the boundaries of the atmosphere and ocean. To this end, we conducted several sensitivity experiments related to the application of available bathymetry data, ocean bottom friction coefficient, and wind stress and air pressure on the ocean surface during August~September 2018 and the case of typhoon SOULIK. The results of comparison and verification are presented here, and they are compared with POM (Princeton Ocean Model) based Regional Tide Surge forecasting Model (RTSM). The results showed that the RTSM_NEMO model had a 29% and 20% decrease in Bias and RMSE respectively compared to the RTSM_POM model, and that the RTSM_NEMO model had a lower overall error than the RTSM_POM model for the case of typhoon SOULIK.