• 제목/요약/키워드: Primer extension

Search Result 123, Processing Time 0.018 seconds

Analysis of Genomic Structure of an Aflatoxin Biosynthesis Homologous Gene Cluster in Aspergillus oryzae RIB Strains

  • Lee, Yun-Hae;Tominaga, Mihoko;Hayashi, Risa;Sakamoto, Kazutoshi;Yamada, Osamu;Akita, Osamu
    • 한국균학회소식:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.32-44
    • /
    • 2006
  • To investigate non-aflatoxin-production of A. oryzae at the molecular level, an aflatoxin biosynthesis gene homolog cluster of RIB 40 was analyzed. Although most genes in the corresponding cluster exhibited from 97 to 99 % similarity to those of Aspergillus flavus, three genes shared 93 % similarity or less. In addition, although slight expression of aflR, positive transcriptional regulator gene, was detected in some A. oryzae strains having seven aflatoxin biosynthesis homologous genes, other genes related to aflatoxin production were not detected. RIB strains were mainly divided into group 1, having seven aflatoxin biosynthesis homologous genes (aflT, nor-i, aflR, norA, avnA, verB, and vbs), and group 2, having three homologous (avnA, verB, and vbs). Partial aflatoxin homologous gene cluster of RIB62 from group 2 was sequenced and compared with that of RIB40 from group 1. RIB62 showed a large deletion upstream of ver-1 with more than half of the aflatoxin homologous gene cluster missing including aflR, a positive transcriptional regulatory gene. Adjacent to the deletion of the aflatoxin homologous gene cluster, RIB62 has a unique sequence of about 8kb and a telomere. Southern analysis of A. oryzae RIB strains with four kinds of probe derived from the unique sequence of RIB62 showed that all group 2 strains have identical hybridizing signals. Polymerase chain reaction with specific primer set designed to amplify the junction between ver-1 and the unique sequence of RIB62 resulted in the same size of DNA fragment only from group 2 strains. Based on these results, we developed a useful genetic tool that distinguishes A. oryzae group 2 strains from the other groups' strains and propose that it might have differentiated from the ancestral strains due to chromosomal breakage.

  • PDF

Molecular Cloning of Mutant cDNA of PU.1 Gene (PU.1 유전자(cDNA)의 인위적 변이체 클로닝)

  • 류종석;유시현
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.499-509
    • /
    • 1995
  • PU.1, a tissue-specific transcription activator, binds to a purine-rich sequence(5'-GAGGAA-3') called PU box. The PU.1 cDNA consists of an open reading frame of 816 nucleotides coding for 272 amino acids. The amino terminal end is highly acidic, while the carboxyl terminal end is highly basic. Transcriptional activation domain is located at the amino terminal end, while DNA binding domain is located at the carboxyl terminal end. Activation of PU.1 transcription factor is supposed to be accomplished by the phosphorylation of serine residue(s). There exist 22 serines in the PU.1. Five(the 41, 45, 132$.$133, and 148th) of the serines(plausible phosphorylation site by casein kinase II), are the primary targets of interest in elucidating the molecular mechanism(s) of the action of the PU.1 gene. In this study, PU.1 cDNA coding for the five serine residues(41th AGC, 45th AGC, 132$.$133th AGC$.$TCA, and 148th TCT), was mutated to alanine codon(41th GCC, 45th GCC, 132$.$133th GCC$.$GCA, and 1481h GCT), respectively, by Splicing-Overlapping-Extension(SOE) using Polymerase Chain Reaction(PCR). And each mutated cDNA fragments was ligated into pBluescript KS+ digested with HindIII and Xba I, to generate mutant clones named pKKS41A, pRKS45A, pMKS132$.$133A, and pMKS148A. The clones will be informative to study the "Structure and Function" of the immu-nologically important gene, PU.1.

  • PDF

Characterization of Three Korean Isolates of Malva Vein Clearing Virus from Curled Mallow (Malva verticillata) (아욱에서 분리한 Malva Vein Clearing Virus 분리주의 특성)

  • Kwak, Hae-Ryun;Kim, Ji-Gwang;Kim, Jeong-Eun;Choi, Hyeon-Yong;Choi, Hong-Soo;Kim, Mikyeong
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.283-288
    • /
    • 2020
  • In September 2017, vein clearing and yellowing symptoms resembling those caused by viruses were observed on leaves of Malva verticillata in Chungnam, Korea. Nucleic acids were extracted from leaves of five symptomatic plants and tested by reverse transcription polymerase chain reaction using four virus specific primer pairs including malva vein clearing virus (MVCV). Amplicons of the expected size (600 bp) were obtained from total RNA of all samples using the MVCV-specific primers. To confirm the presence of MVCV in symptomatic plants, the DNA fragments from three samples were purified, and directly sequenced. BLAST analysis revealed that it shared the highest nucleotide identity (99%) with a MVCV isolate from tomato (Mexico). The virus isolates obtained from the third re-inoculated Chenopodium was designated as Cm1-5. Tissue from Cm1, Cm3, and Cm5 isolates was mechanically sap inoculated into 23 indicator plants. Cm3 isolate induced chlorotic local and mosaic symptoms in Althaea rosea. Phylogenetic analysis based on coat protein gene of 19 MVCV isolates from 6 different countries and plant species, did not correlated with either the geographical origin of the isolates, or pathogenicity. To our knowledge, this study first reports the natural occurrence of MVCV on M. verticillata in Korea and characterization of three Korean isolates of MVCV.