• Title/Summary/Keyword: Primary mirror

Search Result 86, Processing Time 0.025 seconds

Ebert-Fastie spectrograph using the Transformable Reflective Telescope kit

  • Ahn, Hojae;Mo, Gyuchan;Jung, Hyeonwoo;Choi, Junwhan;Kwon, Dou Yoon;Lee, Minseon;Kim, Dohoon;Lee, Sumin;Park, Woojin;Lee, Ho;Park, Kiehyun;Kim, Hyunjong;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.4-40.4
    • /
    • 2020
  • Kyung Hee university invented the Transformable Reflective Telescope (TRT) for optical experiment and education. The TRT kit can transform into three optical configurations from Newtonian to Cassegrain to Gregorian by exchanging the secondary mirror. We designed the Ebert-Fastie spectrograph as an extension of the TRT kit. The primary mirror of the TRT kit serves as both collimator and camera lens, and the reflective grating as the dispersing element is placed along the optical axis of the primary mirror. We designed and fabricated the grating holder and the source units using 3D printer. Baffle was also fabricated to suppress the stray light, which was reduced by 83%. The spectrograph can observe the optical wavelength range (4000Å~7000Å). Measured resolving power (R=λ/Δλ) was ~700 with slit width of 0.18mm. The spectrograph is optimized for f/24, and the spectral pixel scale is 0.49Å/pixel with Canon 550D detector. We present the sample spectra of discharged Ne, Ar and Kr gases. The flexible setting and high performance make this spectrograph a useful tool for education and experiment.

  • PDF

An Optical Design of Off-axis Four-mirror-anastigmatic Telescope for Remote Sensing

  • Li, Xing Long;Xu, Min;Ren, Xian Dong;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.243-246
    • /
    • 2012
  • An off-axis four-mirror-anastigmatic telescope is presented here which is composed of two aspheric surfaces and two spherical surfaces. The entrance pupil diameter is 290 mm and the stop is located at the primary mirror. The effective focal length is 900 mm. The strip field of view for the telescope is $15^{\circ}{\times}0.2^{\circ}$ and if the telescope is launched into an orbit about 400 km altitude, the observed range width will be more than 105 km within a scene without any other auxiliary scanning instrument. The spectral range can be as wide as from visual wave band to infrared wave band in the mirror system. This telescope can be used for environmental monitoring with different detectors whose pixel is adapted to the optical resolution. In this paper, the spectral range is chosen as 3.0 -5.0 ${\mu}m$, and center distance of the pixel is 30 ${\mu}m$. And the image quality is near the diffraction limit.

Operation and System Upgrade of KMTNet

  • Lee, Chung-Uk;Kim, Seung-Lee;Cha, Sang-Mok;Lee, Yongseok;Kim, Dong-Jin;Lee, Dong-Joo;Lim, Jin-Sun;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.43.3-44
    • /
    • 2017
  • We report the operational highlights of KMTNet in the point of observing rate, image pre-processing and data reduction, observing run for each science program, and scientific publications performed in 2016. Major system upgrade has been conducted in the CCD camera and the wide field telescope optics: the post amp and readout electronics of the 18k Mosaic CCD camera at Siding Spring Observatory site has been fine tuned and the protected silver coat of the primary mirror has been replaced with the bare aluminium coat due to the degradation of reflectivity of the primary mirror surface. A plan of KMTNet observation system improvement for 2017 will be introduced in this talk.

  • PDF

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.

A Study on the Adhesive Properties of Lightweight Primary Mirror (대구경 주반사경의 접착 특성에 관한 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.796-801
    • /
    • 2007
  • The optical performance of the mirror for satellite camera is highly dependent on the adhesive properties between the mirror and its support. In order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Shear moduli of the adhesives are determined by using single lap adhesively bonded joint. For the shear tests, several points have been selected from $-20^{\circ}C$ to $50^{\circ}C$ which is operating temperature range of the adhesive. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics of the adhesives are discussed regarding their temperature sensitivity. The analysis results of RMS wavefront error w.r.t shear modulus are presented.

  • PDF

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.

An optomechanical study of large mirrors for satellites (위성용 대구경 반사경의 광 기계변형 연구)

  • 이준호;엄태경;이완술;윤성기
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Optical payloads for earth-observation satellites become bigger as the required resolution becomes finer. For example, the diameter of the primary mirror of IKONOS, which has ground sampling distances of 1m/4m in panchromatic/multi spectral bands, is about 700mm. As the size of optical payload becomes bigger, the light-weighting of the mirrors becomes more significant. This paper presents the FEM results of the following four mirror types of 300 m diameter under gravity release and temperature changes: flat back mirror, single arch mirror, double arch mirror, and honeycomb sandwich mirror. Furthermore, this paper extends the FEM results to larger mirrors up to the diameter of 1m based on a general scaling law and Valenete\`s equation.

A Study on the Shear Characteristics of Adhesives in Primary Mirror Supports of Satellite Camera (인공위성 카메라 주반사경 지지부에 적용되는 접착제의 전단 특성 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.808-815
    • /
    • 2007
  • The optical performance of the mirror fur satellite camera is highly dependent on the adhesive properties between the mirror and its support. Therefore, in order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Also the experiment should be performed in circumstances similar to real manufacturing process of mirror, because extra factors such as size effects, the adhesion effects of primer and reactions between adhesive and primer affect the properties of adhesive regions. In this research shear moduli of the adhesives are determined by using a single lap adhesively bonded joint. For the shear tests, several temperatures have been selected from $-20^{\circ}C$ to $55^{\circ}C$ which is operating temperature range of the adhesive. In the case of linear behavior materials, shear moduli are calculated through a linear curve fitting. Shear stress-strain relation is obtained by using an exponential curve fitting for material which shows non-linear behavior. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics and adaptability of the adhesives are discussed regarding their temperature sensitivity.

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.