• Title/Summary/Keyword: Primary energy consumption

Search Result 183, Processing Time 0.025 seconds

The energy-saving effect by controlling the number of operating chillers in university facility (대학시설에 대한 열원기기 대수 운전 제어의 에너지 절약 효과)

  • Lee, Je-Hyeon;Akashi, Yasunori;Kum, Jong-Soo;Kim, Dong-Gyu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1043-1048
    • /
    • 2009
  • This paper proposes the new operation control method that let heat source system stop and circulate only hot water at low load, and verified the introduction effect. At first, we constructed simulation model of heat source system and examined the proposing method by using simulation model. At last, we examined the introduction effect of proposing method with actual building. As a result, the primary energy consumption of heat source system was reduced by about 13%.

  • PDF

Recommendations for Improving Incentive Systems in the Building Sector of South Korea

  • Han, Hyesim;Kim, Jonghun;Jeong, Hakgeun;Jang, Cheolyong
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.53-59
    • /
    • 2015
  • Purpose: Reducing energy consumption and greenhouse gas emissions is a primary concern throughout the world, and the building sector is a particularly efficient area for making these reductions. In South Korea, the government has recently enacted policies for "Green Growth" that, among other things, enforce regulations in the building certification rating system (BCRS) and reorganize existing incentive systems. Method: In this study, we examined regulations and incentive systems used in the United Kingdom, Germany, and the United States that encourage the use of energy efficient technologies in construction and compared these policies to those used in South Korea. We also disseminated surveys to experts in the fields of architecture, planning and design, and engineering to better understand their knowledge and perception of the BCRS and its incentive systems. Additionally, we sought their recommendations for improving these incentive systems. Result: Based on our comparative case studies of regulations and incentives in other countries, alongside recommendations from experts in South Korea, we concluded that incentive systems in South Korea are limited and require improvement. We make recommendations for strengthening existing regulations and incentives and for implementing new incentive programs.

Operating Budget Management Plan on Electric Energy Consumption of Educational Facilities (교육시설물의 전기에너지 사용량에 따른 운영예산 관리방안)

  • Wang, Ji-Hwan;Jin, Chengquan;Lee, Sanghoon;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.26-35
    • /
    • 2022
  • The 7th education reform in 1997 has led changes in the way buildings were constructed and such changes drove educational facilities to steadily consume more energy every year. Also, these facilities take several years' estimated expenditure as well as the increased unit price of electricity into account when planning their annual operating budget. Such circumstances may adversely affect the establishment of their budget plan since improper allocation of operating costs could take place. To propose educational facilities' operating budget management plan on electrical energy consumption, this study developed a model that help oversee the facilities' consumption of electrical energy. For the model development, the primary core variables related to electrical energy factors from the aspects of surroundings, physics, policy, etc. were derived from taking both literature research and the characteristics of these facilities into account. The secondary core variables were then derived using the correlation analysis. Lastly, the electric energy use prediction model was developed by performing regression analysis based on the derived secondary core variables.

Assessment on the Energy Efficiency Performance by the Fore-body Retrofit of the Coastline (연안선박의 선수부 개조에 의한 에너지 효율 성능 분석)

  • Park, Dong-Woo;Kim, Kyung Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.965-971
    • /
    • 2017
  • The primary objective of this study was to assess the energy efficiency performance of an optimized hull form capable of saving energy based on existing vessels. The bow shape of existing vessels was investigated, giving consideration to design draft and speed. Resistance performances were also assessed for existing vessels according to operating conditions. Commercial CFD codes and model test materials were used to assess effective power. An optimized hull form with minimum resistance was selected given real operating conditions. The effective horsepower of existing and optimized vessels was estimated at three speeds. Resistance performance for an optimized vessel showed a 6 % improvement in effective horsepower at design speed (12 knots) compared to existing vessels. Quasi-propulsive efficiency employed experimental data, while energy efficiency performance was analyzed based on operating days, bunker fuel oil C cost, daily fuel oil consumption and specific fuel oil consumption. Energy efficiency performance for an optimized vessel showed a gain of 30 million won per year in reduced costs at design speed (12 knots) compared to existing vessels.

Distance Aware Intelligent Clustering Protocol for Wireless Sensor Networks

  • Gautam, Navin;Pyun, Jae-Young
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.122-129
    • /
    • 2010
  • Energy conservation is one of the most important issues for evaluating the performance of wireless sensor network (WSN) applications. Generally speaking, hierarchical clustering protocols such as LEACH, LEACH-C, EEEAC, and BCDCP are more efficient in energy conservation than flat routing protocols. However, these typical protocols still have drawbacks of unequal and high energy depletion in cluster heads (CHs) due to the different transmission distance from each CH to the base station (BS). In order to minimize the energy consumption and increase the network lifetime, we propose a new hierarchical routing protocol, distance aware intelligent clustering protocol (DAIC), with the key concept of dividing the network into tiers and selecting the high energy CHs at the nearest distance from the BS. We have observed that a considerable amount of energy can be conserved by selecting CHs at the nearest distance from the BS. Also, the number of CHs is computed dynamically to avoid the selection of unnecessarily large number of CHs in the network. Our simulation results showed that the proposed DAIC outperforms LEACH and LEACH-C by 63.28% and 36.27% in energy conservation respectively. The distance aware CH selection method adopted in the proposed DAIC protocol can also be adapted to other hierarchical clustering protocols for the higher energy efficiency.

Cooperative spectrum leasing using parallel communication of secondary users

  • Xie, Ping;Li, Lihua;Zhu, Junlong;Jin, Jin;Liu, Yijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1770-1785
    • /
    • 2013
  • In this paper, a multi-hop transmission protocol based on parallel communication of secondary users (SUs) is proposed. The primary multi-hop network coexists with a set of SUs by cooperative spectrum sharing. The main optimization target of our protocol is the overall performance of the secondary system with the guarantee of the primary outage performance. The energy consumption of the primary system is reduced by the cooperation of SUs. The aim of the primary source is to communicate with the primary destination via a number of primary relays. SUs may serve as extra decode-and-forward relays for the primary network. When an SU acts as a relay for a primary user (PU), some other SUs that satisfy the condition for parallel communication are selected to simultaneously access the primary spectrum for secondary transmissions. For the proposed protocol, two opportunistic routing strategies are proposed, and a search algorithm to select the SUs for parallel communication is described. The throughput of the SUs and the PU is illustrated. Numerical results demonstrate that the average throughput of the SUs is greatly improved, and the end-to-end throughput of the PU is slightly increased in the proposed protocol when there are more than seven SUs.

TASL: A Traffic-Adapted Sleep/Listening MAC Protocol for Wireless Sensor Network

  • Yang, Yuan;Zhen, Fu;Lee, Tae-Seok;Park, Myong-Soon
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.39-43
    • /
    • 2006
  • In this paper, we proposed TASL-MAC, a medium-access control (MAC) protocol for wireless sensor networks. In wireless sensor networks, sensor nodes are usually deployed in a special environment, are assigned with long-term work, and are supported by a limited battery. As such, reducing the energy consumption becomes the primary concern with regard to wireless sensor networks. At the same time, reducing the latency in multi-hop data transmission is also very important. In the existing research, sensor nodes are expected to be switched to the sleep mode in order to reduce energy consumption. However, the existing proposals tended to assign the sensors with a fixed Sleep/Listening schedule, which causes unnecessary idle listening problems and conspicuous transmission latency due to the diversity of the traffic-load in the network. TASL-MAC is designed to dynamically adjust the duty listening time based on traffic load. This protocol enables the node with a proper data transfer rate to satisfy the application's requirements. Meanwhile, it can lead to much greater power efficiency by prolonging the nodes' sleeping time when the traffic. We evaluate our implementation of TASL-MAC in NS-2. The evaluation result indicates that our proposal could explicitly reduce packet delivery latency, and that it could also significantly prolong the lifetime of the entire network when traffic is low.

The Development Prospect for Gas Hydrate as an Energy Source (에너지원으로서의 가스 하이드레이트 개발 전망)

  • Baek Youngsoon;Lee Jeonghwan;Choi Yangmi;Park Seoungmin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.652-655
    • /
    • 2005
  • Considering the fact that more than $97\%$ of fossil energy resources such as oil and natural gas needed in Korea rely on import, primary concern of the national economy is to secure future energy sources. Gas hydrates. which is non-conventional types of natural gas, distribute worldwide, especially in marine and permafrost Gas hydrates draw great attention recently as a new clean energy resources substituting conventional oil gas due to its presumed huge amount of volume reaching 10 trillion tons of gas and environmentally friendly characteristics. Results of preliminary survey by Korea Gas Corporation (KOGAS) and Korea Institute of Geoscience and Mineral Resources (KIGAM) showed that gas hydrates can be present in deep sea over 1,000m water depth in the East Sea. Gas hydrates can contribute to the rapidly increasing consumption of natural gas in Korea and achieve the self-support target by 2010 with $30\%$ of total natural gas demand. This study presents the potentialities and development prospects of gas hydrate as a future energy source.

  • PDF

A Study on the Energy Performance Evaluation of Window System with the Balcony Types of Apartments (공동주택 세대내 발코니 유형별 창호의 냉난방 에너지 성능분석 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Kim, Byoung-Soo;Hwang, Sang-Kun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.83-90
    • /
    • 2007
  • Apartment balcony has been indiscreetly remodeled since the government permitted remodeling on January 2006. But remodeled balcony has a few problems such as increase of heating energy, surface condensation and cold draft. The reason of thermal problem is mainly caused by the window system in a extended balcony. The purpose of this study is to analyze heating and cooling energy and propose the efficient window types for the extended balcony area of a apartment building. 4 types of window system which have fairly high U value in Korea are investigated as follows ; double clear glass, double low-e glass, triple clear glass and triple low-e glass. Comparing double clear 91ass with double low-e glass, triple clear glass and triple low-e glass, simulation results show that 10%, 7% and 15% saving of total primary energy can be expected.

Current Status of Magnesium Smelting and Recycling Technology (마그네슘의 제련 및 리사이클링 기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.3-14
    • /
    • 2020
  • Magnesium is the third most abundant structural metal after aluminum and iron. Magnesium is the lightest metal in the common metals. It has a density 33 % less than aluminum and 77% lower than steel. However, the primary magnesium production process is highly energy intensive. The recycling of magnesium scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. However, the amount of recovered metal from scrap is limited because of the difficulties to remove the impurities in the scrap. This work provides an overview of the magnesium production and recycling process.