• Title/Summary/Keyword: Primary cup-seal

Search Result 2, Processing Time 0.014 seconds

Finite Element Analysis of Primary Cup-Seal in a Clutch Master Cylinder (클러치 마스터실린더 주 컵-시일의 유한요소해석)

  • 임문혁;이재천;구본은
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.143-150
    • /
    • 2002
  • The characteristics of rubber cup seal is highly nonlinear due to the nature of the material's non-linearity and large deformation with frictional contact. And the performance of sealing in master cylinders of automobile is one of the most important factors which affects the safety of drivers. The effects of various shape of the primary cup seal in clutch master cylinder was investigated to reduce oil leakage and to obtain a long reliable life. Deformation and distribution of stresses on the primary cup seal against hydraulic oil pressure were analyzed with changing design parameters such as depth and radius in cup-seal. The obtained results indicate that the depth of cup seal plays a major role on deformation resulting in the sealing force to the wall of clutch master cylinder.

An Experimental Study on The Friction Coefficient of Rubbers for Clutch Master Cylinder Cup-Seals (클러치 마스터실린더 컵-시일 고무의 마찰계수 실험 연구)

  • 이재천;임문혁;이병수;장지현;정용승;허만대;최병기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.112-118
    • /
    • 2003
  • The friction coefficients of the rubber for clutch master cylinder were experimentally measured in this study. The cylindrical rubber samples for primary cup-seal and secondary cup-seal were tested against the aluminum or the steel plates of master cylinder housing under the various conditions of brake oil temperatures and normal loads. Dry sliding friction coefficients were also measured under various load conditions. The test revealed following results. First, the friction coefficient under fluid lubrication condition in general decreases, as the oil temperature or normal load increases. Second, the steel plate of low surface roughness yielded comparatively low friction coefficient on the range of 0.30∼0.67. On the other hand, the aluminum plate of high surface roughness yielded high friction coefficient on the range of 0.31∼1.15. Third, the friction coefficient of dry surface contact decreases as the normal load increases. This is contrary to the general principle of friction coefficient between metal plates.